点到平面的距离就是:该点与平面内任意一点连成的线段,在平面的法向量上的射影长。所以点到平面的距离公式为:设该点与平面内任意一点的连线的向量为a向量,平面的法向量为n向量,距离为d=|an|/|n|即:a向量与n向量的数量积除以n向量的模。
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 [1] 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
点到平面的距离公式:d=|Ax0+By0+Cz0+D|/√(A²+B²+C²)。
公式描述:公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。
求法:
确定一个点的射影(如垂足)位置的方法(分情况),斜线上任意一点在平面上的射影必在斜线在平面的射影上;若一个角所在平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角平分线上;若一条直线与一个角的两边夹角相等,那么这一条直线在平面上的射影在这个角平分线上。
如果两个平面相互垂直,一个平面上的点在另一个平面上的射影必在这两个平面的交线上;若三棱锥的侧棱相等或侧棱与底面所成角相等,那么顶点在底面上的射影是底面三角形的外心。
平面的法向量a,点为A。找平面上一点B以下AB为向量。
公式:距离=向量AB和法向量a的数量积的绝对值除以法向量的模长。
在此情况下,一般是由点向平面作垂线,将垂线与平面内有关的线段构成平面几何图形,利用勾股定理或三角函数,求出要求的距离。
扩展资料
点到平面距离是指空间内一点到平面内一点的最小长度叫做点到平面的距离,特殊的有,当点在平面内,则点到平面的距离为0。
平面的一般式方程Ax +By +Cz + D = 0
其中n = (A, B, C)是平面的法向量,D是将平面平移到坐标原点所需距离(所以D=0时,平面过原点)。
向量的模(长度)给定一个向量V(x, y, z),则|V| = sqrt(x x + y y + z z)。
1、设平面的法向量是n,Q是这平面内任意一点,则空间点P到这个平面的距离:d=|QP·n|/|n|,这里QP表示以Q为起点、P为终点的向量。
距离d是向量QP在法向量n上投影的绝对值,即
d=|Pij<n>QP|=||QP|cos<QP,n>|=||n||QP|cos<QP,n>|/|n|
==|QP·n|/|n|。
2、设直线的方向向量是s,Q是这直线上任意一点,则空间点P转这直线的距离:d=|QP×s|/|s|,这里QP表示以Q为起点、P为终点的向量。
距离d是以向量QP、向量s为邻边的平行四边形s边上的高,所以
d=|QP|sin<QP,s>=[|s||QP|sin<QP,s>]/|s|=|QP×s|/|s|。
|点(a,b,c) 到平面 Ax+By+Cz=D的距离
=|Aa+Bb+Cc-D| /√(A^2+B^2+C^2)
设平面外那个点为P,平面内任意一点为A,任意一点都行。
则距离为向量PA点积法向量再除以法向量的模。
公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。
扩展资料:
在空间坐标系内,平面的方程均可用是xyz的三元一次方程Ax+By+Cz+D=0来表示。
由于平面的点法式方程A(x-x0)+B(y-y0)+C(z-z0)=0是x,y,x的一次方程,而任一平面都可以用它上面的一点及它的法线向量来确定,所以任何一个平面都可以用三元一次方程来表示。
参考资料来源:百度百科-平面方程
以上就是关于空间向量求点到平面的距离全部的内容,包括:空间向量求点到平面的距离、点到平面的距离怎么求、点到平面距离的公式是什么啊等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!