核酸:基本组成元素:c
h
o
n
p;基本单位:核苷酸核苷酸由一个含n碱基,一个五碳糖,一个磷酸组成,由于五碳糖的不同,核苷酸分为脱氧核糖核苷酸及核糖核苷酸,脱氧核糖核苷酸组成脱氧核糖核酸即dna,核糖核苷酸组成核糖核酸即rna;多样性:核苷酸由于所含碱基的不同而不同,碱基的种类共五种,即腺嘌呤,鸟嘌呤,胞嘧啶,胸腺嘧啶,尿嘧啶;dna有前四种碱基,无尿嘧啶,rna也有四种碱基,但有尿嘧啶,无胸腺嘧啶
核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。
DNA和RNA都是由一个一个核苷酸(nucleotide)头尾相连而形成的,由C、H、O、N、P5种元素组成。
单个核苷酸是由含氮有机碱(称碱基)、戊糖(即五碳糖)和磷酸三部分构成的。
碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶
>(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。
核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基类别
DNA
RNA
基本单位
脱氧核糖核苷酸
核糖核苷酸
核苷酸
腺嘌呤脱氧核苷酸
鸟嘌呤脱氧核苷酸
胞嘧啶脱氧核苷酸
胸腺嘧啶脱氧核苷酸
腺嘌呤核苷酸
鸟嘌呤核苷酸
胞嘧啶核苷酸
尿嘧啶核苷酸
碱基
腺嘌呤(A)
鸟嘌呤(G)
胞嘧啶(C)
胸腺嘧啶(T)
腺嘌呤(A)
鸟嘌呤(G)
胞嘧啶(C)
尿嘧啶(U)
五碳糖
脱氧核糖
核糖
酸
磷酸
磷酸
团(如甲基化、甲硫基化等)修饰后的衍生物
蛋白质主要由C,H,O
N
四种化学元素组成,
多数蛋白质还含有S
和P,有些蛋白质还含有铁、铜、锰、锌等矿物质
脂质一般由甘油和脂肪酸组成,这两种物质的成分就含有C、H、O
可能含有N、P(磷脂特别一点,一定有P)
组成核酸的主要元素有C,H,O,N,P
糖类是由CHO三种元素组成的,不含有N元素
一、知识要点
核酸分两大类:DNA和RNA所有生物细胞都含有这两类核酸但病毒不同,DNA病毒只含有DNA,RNA病毒只含RNA
核酸的基本结构单位是核苷酸核苷酸由一个含氮碱基(嘌呤或嘧啶),一个戊糖(核糖或脱氧核糖)和一个或几个磷酸组成核酸是一种多聚核苷酸,核苷酸靠磷酸二酯键彼此连接在一起核酸中还有少量的稀有碱基RNA中的核苷酸残基含有核糖,其嘧啶碱基一般是尿嘧啶和胞嘧啶,而DNA中其核苷酸含有2′-脱氧核糖,其嘧啶碱基一般是胸腺嘧啶和胞嘧啶在RNA和DNA中所含的嘌呤基本上都是鸟嘌呤和腺嘌呤核苷酸在细胞内有许多重要功能:它们用于合成核酸以携带遗传信息;它们还是细胞中主要的化学能载体;是许多种酶的辅因子的结构成分,而且有些(如cAMP、cGMP)还是细胞的第二信使
DNA的空间结构模型是在1953年由Watson和Crick两个人提出的建立DNA空间结构模型的依据主要有两方面:一是由Chargaff发现的DNA中碱基的等价性,提示A=T、G≡C间碱基互补的可能性;二是DNA纤维的X-射线衍射分析资料,提示了双螺旋结构的可能性DNA是由两条反向直线型多核苷酸组成的双螺旋分子单链多核苷酸中两个核苷酸之间的唯一连键是3′,5′-磷酸二酯键按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为034nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小
DNA能够以几种不同的结构形式存在从B型DNA转变而来的两种结构A型和Z型结构巳在结晶研究中得到证实在顺序相同的情况下A型螺旋较B型更短,具有稍大的直径DNA中的一些特殊顺序能引起DNA弯曲带有同一条链自身互补的颠倒重复能形成发卡或十字架结构,以镜影排列的多嘧啶序列可以通过分子内折叠形成三股螺旋,被称为H -DNA的三链螺旋结构由于它存在于基因调控区,因而有重要的生物学意义
不同类型的RNA分子可自身回折形成发卡、局部双螺旋区,形成二级结构,并折叠产生三级结构,RNA与蛋白质复合物则是四级结构tRNA的二级结构为三叶草形,三级结构为倒L形mRNA则是把遗传信息从DNA转移到核糖体以进行蛋白质合成的载体
核酸的糖苷键和磷酸二酯键可被酸、碱和酶水解,产生碱基、核苷、核苷酸和寡核苷酸酸水解时,糖苷键比磷酸酯键易于水解;嘌呤碱的糖苷键比嘧啶碱的糖苷键易于水解;嘌呤碱与脱氧核糖的糖苷键最不稳定RNA易被稀碱水解,产生2’-和3’-核苷酸,DNA对碱比较稳定细胞内有各种核酸酶可以分解核酸其中限制性内切酶是基因工程的重要工具酶
核酸的碱基和磷酸基均能解离,因此核酸具有酸碱性碱基杂环中的氮具有结合和释放质子的能力核苷和核苷酸的碱基与游离碱基的解离性质相近,它们是兼性离子
核酸的碱基具有共轭双键,因而有紫外吸收的性质各种碱基、核苷和核苷酸的吸收光谱略有区别核酸的紫外吸收峰在260nm附近,可用于测定核酸根据260nm与280nm的吸收光度(A260)可判断核酸纯度
变性作用是指核酸双螺旋结构被破坏,双链解开,但共价键并未断裂引起变性的因素很多,升高温度、过酸、过碱、纯水以及加入变性剂等都能造成核酸变性核酸变性时,物理化学性质将发生改变,表现出增色效应热变性一半时的温度称为熔点或变性温度,以Tm来表示DNA的G+C含量影响Tm值由于G≡C比A=T碱基对更稳定,因此富含G≡C的DNA比富含A=T的DNA具有更高的熔解温度根据经验公式xG+C =(Tm - 693)× 244可以由DNA的Tm值计算G+C含量,或由G+C含量计算Tm值
变性DNA在适当条件下可以复性,物化性质得到恢复,具有减色效应用不同来源的DNA进行退火,可得到杂交分子也可以由DNA链与互补RNA链得到杂交分子杂交的程度依赖于序列同源性分子杂交是用于研究和分离特殊基因和RNA的重要分子生物学技术
染色体中的DNA分子是细胞内最大的大分子许多较小的DNA分子,如病毒DNA、质粒DNA、线粒体DNA和叶绿体[]NA也存在于细胞中许多DNA分子,特别是细菌的染色体DNA和线粒体、叶绿体DNA是环形的病毒和染色体DNA有一个共同的特点,就是它们比包装它们的病毒颗粒和细胞器要长得多,真核细胞所含的DNA要比细菌细胞多得多
真核细胞染色质组织的基本单位是核小体,它由DNA和8个组蛋白分子构成的蛋白质核心颗粒组成其中H2A,H2B,H3,H4各占两个分子,有一段DNA(约146bp)围绕着组蛋白核心形成左手性的线圈型超螺旋细菌染色体也被高度折叠,压缩成拟核结构,但它们比真核细胞染色体更富动态和不规则,这反映了原核生物细胞周期短和极活跃的细胞代谢
以上就是关于组成核酸的基本单位是 ,基本成分是 、 、 。全部的内容,包括:组成核酸的基本单位是 ,基本成分是 、 、 。、组成核酸的基本成分、糖类,脂质,蛋白质和核酸分别有什么元素等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!