单调函数是什么

桃子的热量2023-04-28  30

函数单调性的定义是:函数的单调性,也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。

单调函数就是指自变量一定区间内(单调区间),因变量随着自变量的单向变化而单向变化。如果因变量随自变量的增大而增大,则称该函数在单调区间内为单调增函数;反之则称为单调减函数。

函数的单调性是函数的重要性质之一,对于它的讨论通常有定义法、图象法、复合函数法等。

增+增=增,减+减=减,增-减=增,减-增=减,

例如:

设函数y=f(x)在上递增,a、b为常数.

(1)若a>0,则函数b+af(x)在I上递增;

(2)若a<0,则函数b+af(x)在I上递减.

即判断F(X1)-F(X2)(其中X1和X2属于定义域,假设X1<X2)若该式大于零,则在定义域内F(X)为减函数;相反,若该式小于零,则在定义域内函数为增函数。

(要注意的是在定义域内,函数既可能为增函数,也可能为减函数,具体情况要看求出来的x的范围。

扩展资料:

一、函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。

1、当x1

<

x2时,都有f(x1)<f(x2)

等价于

2、当x1

<

x2时,都有f(x1)>f(x2)

3、如上图右所示,对于该特殊函数f(x),我们不说它是增函数或减函数,但我们可以说它在区间

[x1,x2]上具有单调性。

二、运算性质

1、f(x)与f(x)+a具有相同单调性;f(x)与

g(x)

=

a·f(x)在

a>0

时有相同单调性,当

a<0

时,具有相反单调性;

2、当f(x)、g(x)都是增(减)函数时,若两者都恒大于零,则f(x)×g(x)为增(减)函数;若两者都恒小于零,则为减(增)函数;

3、两个增函数之和仍为增函数;增函数减去减函数为增函数;两个减函数之和仍为减函数;减函数减去增函数为减函数;函数值在区间内同号时,

增(减)函数的倒数为减(增)函数。

参考资料来源:百度百科—单调性

一般的,不强调区间的情况下,所谓的单调函数是指, 对于整个定义域而言,函数具有单调性。而不是针对定义域的子区间而言。举个例子,反比例函数是一个具有单调性的函数,而不是一个单调函数,因为在反比例函数的定义域上,并不呈现整体的单调性。单调函数只是单调性函数中特殊的一种。区间具有单调性的函数并不一定是单调函数,而单调函数的子区间上一定具有单调性。具有单调性函数可以根据区间不同而单调性不同。

现代数学中,在有序集合之间的函数是单调(monotone)的,如果它们保持给定的次序。这些函数最先出现在微积分中,后来推广到序理论中更加抽象结构中。尽管概念一般是一致的,两个学科已经发展出稍微不同的术语。在微积分中,我们经常说函数是单调递增和单调递减的,在序理论中偏好术语单调和反单调或序保持和序反转。[2]

在序理论中,不限制于实数集合,可以考虑任意偏序集合甚至是预序集合。在这些情况下上述定义同样适用。但是要避免术语"递增"和"递减",因为一旦处理的不是全序的次序就没有了吸引人的图像动机。进一步的,严格关系 < 和 > 在多数非全序的次序中很少使用,因此不介入它们的额外术语。

函数的单调性(monotonicity)也可以叫做函数的增减性。

当函数 f(x)的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。

单调性

函数的单调性(monotonicity)也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。当函数f(x) 的自变量在其定义区间内增大(或减小)时,函数值也随着增大(或减小),则称该函数为在该区间上具有单调性(单调递增或单调递减)。

有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。函数的单调性是函数在一个单调区间上的“整体”性质,具有任意性,不能用特殊值代替。

百度百科——单调性

意义:函数的单调性就是随着x的变大,y在变大就是增函数,y变小就是减函数,具有这样的性质就说函数具有单调性,符号表示:就是定义域内的任意取x1,x2,且x1<x2,比较f(x1),f(x2)的大小,图像上看从左往右看图像在一直上升或下降的就是单调函数。

在区间上呈上升或下降趋势

函数的单调性是函数的递增、递减性的统称,单调区间也是如此函数y=f(x)的单调性的实质是当自变量x处在一个不断变大的过程中,函数y也处在这个相应的不断变大(增函数)或不断变小(减函数)的过程中

2研究函数的单调性必须在定义域内进行,单调区间是定义域的子集定义法是讨论函数单调性的基本而重要的方法,其步骤为:①设x1、x2是定义下的任意两个值,且x1<x2;②作差f(x1)-f(x2),并将差式变形、化简,目标是有利于判断符号;③判断

f(x1)-f(x2)的正负;④结论

3单调性与“区间”紧密相关,一个函数在不同区间可有不同单调性;单调性是函数在某一区间的“整体”性质,因此定义中的x1、x2具有任意性,不能用特值取代,如我们要证f(x)=x2+1在[1,3]上是增函数,不能因为f(3)>f(1)便认为得到证明,但此时可以断定f(x)在[1,3]上不是减函数(为什么)

4增(减)函数的图象在其区间d上从左向右是上升(下降)的

5如果对函数定义域内的任何x,都有f(x+t)=f(x)(t≠0,t为常数),则f(x)叫做周期函数,t叫做函数的周期显然如果t是函数的周期,则nt(n为整数)也是函数的周期,故函数的周期是不唯一的,在所有的正周期中如果存在一个最小的周期,则叫做最小正周期,一般说函数的周期都是指函数的最小正周期

以上就是关于单调函数是什么全部的内容,包括:单调函数是什么、函数的单调性是什么意思呢、单调函数是怎样的等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3706674.html

最新回复(0)