函数的周期是什么


函数的周期性定义:若存在常数T,对于定义域内的任意x,使f(x)=f(x+T)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。

设函数f(x)在区间X上有定义,若存在一一个与x无关的正数T,使对于任一x∈X,恒有f(x+T)=f(x)。

则称f(x)是以T为周期的周期函数,把满足上式的最小正数T称为函数f(x)的周期。二、周期函数的运算性质:

①若T为f(x)的周期,则f(ax+b)的周期为T/al。

②若f(x),g(x)均是以T为周期的函数,则f(X)+g(X)也是以T为周期的函数。

③若f(x),g(x)分别是以T1,T2。

周期公式

sinx的函数周期公式T=2π,sinx是正弦函数,周期是2π

cosx的函数周期公式T=2π,cosx是余弦函数,周期2π。

tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切。

secx和cscx的函数周期公式T=2π,secx和cscx是正割和余割。

内容如下:

(1)f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。

(2)sinx的函数周期公式T=2π,sinx是正弦函数,周期是2π。

(3)cosx的函数周期公式T=2π,cosx是余弦函数,周期2π。

(4)tanx和 cotx 的函数周期公式T=π,tanx和 cotx 分别是正切和余切。

(5)secx 和cscx 的函数周期公式T=2π,secx 和cscx 是正割和余割。

相关内容解释:

出示函数周期性的定义:对于函数y=f(x),假如存在一个非零常数T,使得当x取定义域内的任何值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

“当自变量增大某一个值时,函数值有规律的重复出现”这句话用数学语言的表达,对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)。

令t=x-1;则f(t)=f(t+4)周期为4。

求周期函数的周期,可以直接利用定义来求,也可以利用基本周期函数的周期间接来求。基本周期函数的周期是:y=sinx  、y=cosx的周期是2π,y=tanx的周期是π。

比如: y=sin3x,    y=sin3x=sin(3x+2π)=sin[3(x+2π/3)

∴  y=sin3x的周期是 2π/3。

再比如说:y=sin²x     y=sin²x =1/2(1-cos2x)     cos2x的周期是π,

∴ y=sin²x 的周期是 π。

扩展资料

周期函数的性质 共分以下几个类型:

(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。

(4)若f(x)有最小正周期T,那么f(x)的任何正周期T一定是T的正整数倍。

(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

(6)周期函数f(x)的定义域M必定是至少一方无界的集合。

参考资料:周期函数_百度百科

呈周期变化的函数,其周期的求法是根据周期函数的定义,设法找到一个常数c使

f(x+c)=f(x)

如:奇函数f(x)满足

f(2+x)=

-

f(2-x)

求函数的周期:

因为f(2+x)=

-

f(2-x)=

-

[-f(x-2)]=f(x-2)

f(x+4)=f[(2+(x+2)]=f[(x+2)-2]=f(x)

所以函数f(x)是

以4为周期的周期函数

以上就是关于函数的周期是什么全部的内容,包括:函数的周期是什么、函数周期性公式大总结是什么、周期函数的周期怎么求呢等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3695413.html

最新回复(0)