斜率等于倾斜角的正切值。
倾斜角是函数图像上某点的切线与x轴的夹角,每给一个点就有其对应的倾斜角,而斜率是该倾斜角的正切值,即若倾斜角表示为α,斜率为tanα
直线(一次函数)上每一点的斜率和倾斜角都是相等的,但曲线(如二次函数)上的点的斜率和倾斜角不一定都相等。同时,斜率是原函数的导数。
扩展资料:
曲线的上某点的斜率则反映了此曲线的变量在此点处的变化的快慢程度。
曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
f'(x)>0时,函数在该区间内单调递增,曲线呈向上的趋势;f'(x)<0时,函数在该区间内单调减,曲线呈向下的趋势。
在(a,b)f''(x)<0时,函数在该区间内的图形是凸(从上向下看)的;f''(x)>0时,函数在该区间内的图形是凹的。
倾斜角:
在平面直角坐标系中,当直线l与X轴相交时,我们取X轴为基准,使X轴绕着交点按逆时针方向(正方向)旋转到和直线l重合时所转的最小正角记为α,那么α就叫做直线l的倾斜角。当l与X轴平行或重合时,我们规定它的倾斜角为零度。
斜率:
亦称“角系数”,表示一条直线相对于横坐标轴的倾斜程度。一条直线与某平面直角坐标系横坐标轴正半轴方向的夹角的正切值即该直线相对于该坐标系的斜率。 如果直线与x轴互相垂直,直角的正切值无穷大,故此直线,不存在斜率。 当直线L的斜率存在时,对于一次函数y=kx+b,(斜截式)k即该函数图像的斜率。
以上就是关于斜率与倾斜角的关系全部的内容,包括:斜率与倾斜角的关系、请讲解一下:直线的倾斜角和斜率是什么、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!