冬天会下雪是由于空中的小冰晶掉落,使得地面上的水分会不断的蒸发上升,从而形成冰晶以及雪花。如若当重量无法被气流所拖住时就会掉落形成雪花,并且雪花形成需要达到水汽饱和与有凝结核这两个条件。还有,一般冬天下雪的地方主要在中高纬度地区。
下雪形成机制:
1、水汽饱和。
空气在某一个温度下所能包含的最大水汽量,叫做饱和水汽量。空气达到饱和时的温度,叫做露点。饱和的空气冷却到露点以下的温度时,空气里就有多余的水汽变成水滴或冰晶。因为冰面饱和水汽含量比水面要低,所以冰晶生长所要求的水汽饱和程度比水滴要低。
2、空气里必须有凝结核。
有做过试验,如果没有凝结核,空气里的水汽,过饱和到相对湿度500%以上的程度,才有可能凝聚成水滴。但这样大的过饱和现象在自然大气里是不会存在的。所以没有凝结核的话,地球上就很难能见到雨雪。凝结核是一些悬浮在空中的很微小的固体微粒。最理想的凝结核是那些吸收水分最强的物质微粒。
在水云中,云滴都是小水滴。它们主要是靠继续凝结和互相碰撞并合而增大成为雨滴的。
冰云是由微小的冰晶组成的。这些小冰晶在相互碰撞时,冰晶表面会增热而有些融化,并且会互相沾合又重新冻结起来。这样重复多次,冰晶便增大了。另外,在云内也有水汽,所以冰晶也能靠凝华继续增长。但是,冰云一般都很高,而且也不厚,在那里水汽不多,凝华增长很慢,相互碰撞的机会也不多,所以不能增长到很大而形成降水。即使引起了降水,也往往在下降途中被蒸发掉,很少能落到地面。
最有利于云滴增长的是混合云。混合云是由小冰晶和过冷却水滴共同组成的。当一团空气对于冰晶说来已经达到饱和的时候,对于水滴说来却还没有达到饱和。这时云中的水汽向冰晶表面上凝华,而过冷却水滴却在蒸发,这时就产生了冰晶从过冷却水滴上"吸附"水汽的现象。在这种情况下,冰晶增长得很快。另外,过冷却水是很不稳定的。一碰它,它就要冻结起来。所以,在混合云里,当过冷却水滴和冰晶相碰撞的时候,就会冻结沾附在冰晶表面上,使它迅速增大。当小冰晶增大到能够克服空气的阻力和浮力时,便落到地面,这就是雪花。
在初春和秋末,靠近地面的空气在0℃以上,但是这层空气不厚,温度也不很高,会使雪花没有来得及完全融化就落到了地面。这叫做降"湿雪",或"雨雪并降"。这种现象在气象学里叫“雨夹雪”。
雪花形成的条件:
天空中的云是由无数的水蒸气和小水点所组成在内陆上的云层,大部分的小水点的直径要比千分之四毫米还要少!可能很多人会认为水是在摄氏零度时凝结成冰,但其实这个说法并不完全正确, 以下是大部分科家相信雪花形成的基本条件:
在一般的情况下,水点并不会互相黏在一起,它也需要一些基本条件配合首先,大气里需要有着大量的水点,是要令大气饱和;同时,大气温度要徘徊在水凝结的温度 ,也即是摄氏零度不过,纯正的水点并不会在这温度下凝固,这是因为水点里没有包含一种名为凝固核的粒子这种凝固核通常会在摄氏零下十度形成,并会被水点所包围和凝固在天空中,水点需要黏附在一些物质才能凝固,大气里最容易找到的应该是尘埃了,不过烟雾甚至细菌也可以作为所需的凝结粒子呢!
曾经有一班苏联人对雪花进行了研究,结果也支持了以上的说法他们使用飞机在天空中投放一些以尘埃做成的人工粒子,然后收集和量度冰核 (凝结核),证实了利用人工粒子形成的雪花比那些天然形成的更大
雪花形成的过程:
当凝结核在摄氏零度以下时,水点便会开始凝结成冰晶由于那些水点是非常细小并且是看不到的,很多人误以为这是升华作用升华作用是指水蒸气没有经过液态的过程而直接变成冰
当冰晶形成后,围绕冰晶的水点会凝固并与冰晶黏在一起,细小的冰晶会吸引更多的水点而逐渐长成更大的冰晶,直至二至二百个冰晶连系在一起,形状不同而且独一无二的雪花便会根据大气环境而形成
雪粒子由天上降至地上的度快慢各异,极小的晶体下降度近乎零,一般雪花则以每秒一米的速度,溶化中的雪还要快好几倍每当雪晶碰到过冷的水点时 ,它们会立刻凝固在一起,形成的软粒子便是雪小球,而整个过程被称为“蒙霜”在温和的区域里,水分子的增加造就了冰晶的生长,从而形成了雪花它那巧夺天工的六角体成为了雪花生长的奥秘,每个雪花有着至少上亿个水分子,冰晶就是从水平和垂直的方向,生长成更大更厚的晶体了不过 ,整个过程都是有着六角对称的特性,确是不可思议呢!
雪花的生长:
雪花形成的时候,大气里水气是饱和的,温度则在摄氏零度以下微细的冰晶会渐渐围绕着凝结核然后,冰晶连结在一起而雪花亦随之诞生这过程被称为“结晶”在结晶过程中,水分子会以它们的基本排列方式从液态变成固态由于冰晶的基本模式是六角棱体,大部份冰晶的雏形都是六角形的当更多的水分子与冰晶结合后,他们会由第一个六角形开始保持冰晶的形状继续向外生长
虽然大部份冰晶形成时有着六边对称的特性,但是它们会因应温度的改变而做成很多不同形状的变化若温度低于摄氏零下三十度,六角柱体的冰晶便会形成,典型的六角形的扁平片状雪花会在摄氏零下十五度左右时形成当温度上升至摄氏零下五度,无论针状、柱状抑或一些不能估计的形状的雪花便会产生由于雪层越高,温度越冷,因此六角柱状的雪花通常会在高云形成较低的云层通常会形成六角平面的片状雪花,而不同形状的结晶会在低云中产生不过现实的情形更加复杂、不为人所知呢!
雪花的大小
很多人会把雪花想象成从天而降的雪,因此他们会假设雪花会和雪球差不多大小事实上,雪花一词是指个别的雪晶,而从天空降下来的雪称为雪球,它聚集了数百甚至数千个细小雪花黏在一起现在,你可以想象得到一个雪花有多大吧
一般来说,雪晶的直径介乎半毫米至三毫米,而雪花的大小大概是十毫米,在一克里有着三千至一万个这些雪花,有些较大的雪花直径可能达到二厘米至四厘米(079英寸至157 英寸),但偶尔也有一些巨型的雪花,有些特别大的雪花的直径能超过五厘米(2英寸)和包含在数百个晶体不过,要长出巨大的雪花是需要完美的条件配合的
周边的温度是影响雪晶大小的其中一个原因在摄氏零下三十六度,雪晶很小,只有0017平方毫米,这时它们是看不见的在摄氏零下二十四度,雪晶的大小是0034平方毫米;在摄氏零下十八度,雪花的大小增加至0084平方毫米处于摄氏零下六度的温度下,它们平均有0256平方毫米在摄氏零下三度,雪花的大小增加至0811平方毫米
雪花的六角形状
我们知道雪晶的六角形状能细分为两大类,一是片状,另一类是柱状我们经常看到比较美丽的雪花便是那些六边对称的片状雪晶它们通常会在温度介乎摄氏零下五度至零下二十度之间形成,柱状雪花包括了针状和中空柱状,针状雪晶在温度介乎摄氏零度至摄氏零下五度形成,中空柱状在是低于摄氏零下二十度形成
如果我们希望找出大部分冰晶是六角棱体的原因,我们或许应该首先了解一下水分子水分子是由两个氢原子以及一个氧原子(这便是我们常把水称为H2O的原因),它们以一种很强的键——共价键, 黏合在一起
当液态的水分子被冷却至凝固点,水分子会互相碰撞,形成固态冰晶,然后它们会利用氢键结合在一起若分子与分子之间结合,便会更稳定相对来说,最稳定的排列方式是以六角形状把六个水分子黏在一起,这也是为什么大部份冰晶是六角形的
很多水分子从冰晶周围黏在一起的时候,它们大部份会黏在六角形冰芯片的角上,这是由于六角形的角比边更容易吸引水分子因此,角会是雪花生长的起步点呢!
雪花的独有性
很久以前,一位科学家曾作一个有关雪花的研究,他使用显微镜来观察大约五千个雪花的形状令他感到出奇的是,竟然找不到任何两个形状完全相同的雪花,每一个雪花都拥有自己的独有图案而从不重复的
科学家其后尝试找出这个雪花的奥秘,结果他们发现雪花对于大气环境的改变是极度敏感的即使气温或水份子饱和度出现微小的改变,雪花生长的图案也可能有很明显的改变在大气里,气温和饱和度是不断改变的,因此我们很难找到两个完全相同雪晶
事实上,雪花有多尖锐能反映其生长环境例如,我们能够看到一个片状主体时,温度大约介乎摄氏零下五度至零下二十度,如果温度变暖至介乎摄氏零度至五度,针状分支便会形成 此外,雪花在空气中飘浮的时间越长,图案会越复杂雪花的形状极多,而且十分美丽如果把雪花放在放大镜下,可以发现每片雪花都是一幅极其精美的图案,连许多艺术家都赞叹不止但是,各种各样的雪花形状是怎样形成的呢
雪花大都是六角形的,这是因为雪花属于六方晶系云中雪花"胚胎"的小冰晶,主要有两种形状一种呈六棱体状,长而细,叫柱晶,但有时它的两端是尖的,样子象一根针,叫针晶别一种则呈六角形的薄片状,就象从六棱铅笔上切下来的薄片那样,叫片晶
如果周围的空气过饱和的程度比较低,冰晶便增长得很慢,并且各边都在均匀地增长它增大下降时,仍然保持着原来的样子,分别被叫做柱状、针状和片状的雪晶
如果周围的空气呈高度过饱和状态,那么冰晶在增长过程中不仅体积会增大,而且形状也会变化最常见的是由片状变为星状
在冰晶增长的同时,冰晶附近的水汽会被消耗所以,越靠近冰晶的地方,水汽越稀薄,过饱和程度越低在紧靠冰晶表面的地方,因为多余的水汽都已凝华在冰晶上了,所以刚刚达到饱和这样,靠近冰晶处的水汽密度就要比离它远的地方小水汽就从冰晶周围向冰晶所在处移动水汽分子首先遇到冰晶的各个角棱和凸出部分,并在这里凝华而使冰晶增长于是冰晶的各个角棱和凸出部分将首先迅速地增长,而逐渐成为枝叉状以后,又因为同样的原因在各个枝叉和角棱处长出新的小枝叉来与此同时,在各个角棱和枝叉之间的凹陷处空气已经不再是饱和的了有时,在这里甚至有升华过程,以致水汽被输送到其他地方去这样就使得角棱和枝叉更为突出,而慢慢地形成了我们熟悉的星状雪花
上面说的实际上是一个典型的星状雪花的形成过程它的相当部位,不论形状或大小,都应当是相同的这种典型的星状雪花只有在一个理想的、平静的环境中(譬如在实验室内)才能形成在大气中,它不能象上面说的那样有步骤地增大,所形成的形状也就不能那样典型这是因为冰晶逐渐在下降着,而且有时在旋转着,各个枝叉接触水汽的多少有所不同,而那些接触水汽较多的枝又便增长得较多因此,我们平常所看到的雪花虽大体上一样但又互不相同
另外,雪花在云内下降的过程中,也会从适宜于形成这种形状的环境降到适宜于形成另一种形状的环境,于是便出观了各种复杂的雪花形状有的象袖扣,有的象刺猾即使都是星状雪花,也有三个枝叉的、六个枝叉的,甚至有十二个枝叉、十八个枝又的
以上所述都是单个雪花的情况在雪花下降时,各个雪花也很容易互相攀附并合在一起,成为更大的雪片雪花的并合大多在以下三种情况下出观(1)当温度低于0℃的时候,雪花在缓慢下降的途中相撞碰撞产生了压力和热,使相撞部分有些融化而彼此沾附在一起,随后这些融化的水又立即冻结起来这样,两个雪花就并合到一起了(2)在温度略高于0℃的时候,雪花上本来已覆有一层水膜,这时如果两个雪花相碰,便借着水的表面张力而沾合在一起(3)如果雪花的枝叉很复杂,则两个雪花也可以只因简单的攀连而相挂在一起
雪花从云中下降到地面,路途很长,在条件适合时,可以经多次攀连并合而变得很大在降大雪的时候,有时有一些鹅毛般的大雪片,就是经过多次并合而成的
但是,有时雪花互碰时不是互相并合在一起,而是给碰破了,这时便产生一些畸形的雪花例如,在降雪的时候,有时会见到一些单个的"星枝",就属于这种情况 雪花有多种多样的形态,但每一片雪花都是六角形的,这是大自然呈现给我们的美丽,也是给我们出的一道课题
雪花的形状,涉及到水在大气中的结晶过程大气中的水分子在冷却到冰点以下时,就开始凝华,而形成水的晶体,即冰晶冰晶和其他一切晶体一样,其最基本的性质就是具有自己的规则的几何外形冰晶属六方晶系,六方晶系具有四个结晶轴,其中三个辅轴在一个平面上,互相以六十度角相交;另一主轴与这三个辅轴组成的平面垂直六方晶系的最典型形状是六棱柱体但是,当结晶过程中主轴方向晶体发育很慢,而辅轴方向发育较快时,晶体就呈现出六边形片状
大气中的水汽在结晶过程中,往往是晶体在主晶轴方向生长速度慢,而三个辅轴方向则快得多,冰晶多为六边片状当大气中的水汽十分丰富的时候,周围的水分子不断地向最初形成的晶片上结合,其中,雪片的六个顶角首当其冲,这样,顶角上会出现一些突出物和枝杈这些枝叉增长到一定程度,又会分叉次级分又与母枝均保持六十度的角度.这样,就形成了一朵六角星形的雪花每片雪花在整体上虽然都是六角星形的,但在细微形态上却有很多差别有人专门收集过不同形状的雪花,竟发现有六千多种不同的细微形态的雪花
雪花从空中飘落时,为什么能保持六角形的形态呢科学家们发现,雪花在空中飘浮时,本身还会振动,而这种振动是环绕对称点进行的,而这个对称点正是最初形成的冰晶,这就是保持雪花形态在飘落过程中不发生变化的原因
不过,在极地,有时由于大气中的水汽不足,湿度极低,水汽结晶过程十分充裕,冰晶最终能形成六棱柱状的标准形态因此,在极地区,有时就能看到降下来的雪不是片状的雪花,而是一些六棱柱形的雪晶!当小水滴自身的重量与它受到的空气浮力相等时,它就在那里飘浮大气层是不均匀的,越往上空气的浮力越小,所以当这些小水滴的直径越小时,云就飘得越高,直径越大时,云就会飘得越低)遇冷后凝结而成的不管是雨还是雪它形成的初期都需要一个核这个核一般来说是由空气中的尘埃充当的当气温变冷后,尘埃的温度比水滴的温度下降得更快,这时小水滴就会聚集并依附在小尘埃上,形成更大的水滴,当它大到比空气重时,它就会降落下来,它越降就会越大,这样就形成了雨而当空气非常冷时,云就不是小水滴了而是小冰晶了雪在形成的初期也需要一个核,小冰晶也会依附在这个核上形成更大的冰晶,当它大到比空气重时就会降落下来,它在降落的过程中不断的有新的小冰晶粘附在上面,到达地面时就形成了漂亮的雪花了有时天空中上面一层的气温比较高,只有形成雨的温度,而下层比上一层要冷得多,并能立刻使雨点凝结成冰,此种情况就下起了颗粒状的雪或者冰雹了,如果只能使部分的雨凝结成雪,就会下雨夹雪
雪花是空中的水汽遇冷凝结成的。在一般情况下,水汽先凝成水,然后才能结冰,但雪花却是直接由水汽凝结成的(人们也把这个过程叫做“凝华”)。
当凝结核在摄氏零度以下时,水点便会开始凝结成冰晶。当冰晶形成后,围绕冰晶的水点会凝固并与冰晶黏在一起,细小的冰晶会吸引更多的水点而逐渐长成更大的冰晶,直至二至二百个冰晶连系在一起,形状不同而且独一无二的雪花便会根据大气环境而形成。
雪粒子由天上降至地上的度快慢各异,极小的晶体下降度近乎零,一般雪花则以每秒一米的速度,溶化中的雪还要快好几倍。每当雪晶碰到过冷的水点时,它们会立刻凝固在一起,形成的软粒子便是雪小球,而整个过程被称为“蒙霜”。在温和的区域里,水分子的增加造就了冰晶的生长,从而形成了雪花。
扩展资料雪花形状的形成原因
在冰晶在相互碰撞过程中合并、增长的同时,冰晶附近的水汽会被消耗。所以,越靠近冰晶的地方,水汽含量越少,过饱和程度越低。在紧靠冰晶表面的地方,因为多余的水汽都已凝华在冰晶上了,所以刚刚达到饱和。这样,靠近冰晶处的水汽含量就要比离冰晶远的地方小。
水汽就从远处向冰晶处运移。水汽分子首先遇到冰晶的各个角棱和凸出部分,并在这里凝华。于是冰晶的各个角棱和凸出部分将首先迅速地增长,而逐渐成为枝叉状。随后,由于同样的原因,远处输运来的水汽会在刚形成的各个枝叉和角棱处长出新的小枝叉来。这样,片状冰晶就慢慢地演化成了我们熟悉的星状雪花。
参考资料来源:百度百科-雪
雪是水或冰在空中凝结再落下的自然现象,或指落下的雪花。雪是水在固态的一种形式。雪只会在很冷的温度及温带气旋的影响下才会出现,因此亚热带地区和热带地区下雪的机会较微。
冰云是由微小的冰晶组成的。这些小冰晶在相互碰撞时,冰晶表面会增热而有些融化,并且会互相沾合又重新冻结起来。这样重复多次,冰晶便增大了。另外,在云内也有水汽,所以冰晶也能靠凝华继续增长。但是,冰云一般都很高,而且也不厚,在那里水汽不多,凝华增长很慢,相互碰撞的机会也不多,所以不能增长到很大而形成降水。即使引起了降水,也往往在下降途中被蒸发掉,很少能落到地面。
最有利于云滴增长的是混合云。混合云是由小冰晶和过冷却水滴共同组成的。当一团空气对于冰晶说来已经达到饱和的时候,对于水滴说来却还没有达到饱和。这时云中的水汽向冰晶表面上凝华,而过冷却水滴却在蒸发,这时就产生了冰晶从过冷却水滴上“吸附”水汽的现象。在这种情况下,冰晶增长得很快。另外,过冷却水是很不稳定的。一碰它,它就要冻结起来。所以,在混合云里,当过冷却水滴和冰晶相碰撞的时候,就会冻结沾附在冰晶表面上,使它迅速增大。当小冰晶增大到能够克服空气的阻力和浮力时,便落到地面,这就是雪花。
当靠近地面的空气在0℃以上,但是这层空气不厚,温度也不很高,会使雪花没有来得及完全融化就落到了地面。这叫做降“湿雪”,或“雨雪并降”。这种现象在气象学里叫“雨夹雪”。
水汽饱和
空气在某一个温度下所能包含的最大水汽量,叫做饱和水汽量。空气达到饱和时的温度,叫做露点。饱和的空气冷却到露点以下的温度时,空气里就有多余的水汽变成水滴或冰晶。因为冰面饱和水汽含量比水面要低,所以冰晶生长所要求的水汽饱和程度比水滴要低。也就是说,水滴必须在相对湿度(相对湿度是指空气中的实际水汽压与同温度下空气的饱和水汽压的比值)不小于100%时才能增长;而冰晶呢,往往相对湿度不足100%时也能增长。例如,空气温度为-20℃时,相对湿度只有80%,冰晶就能增长了。气温越低,冰晶增长所需要的湿度越小。因此,在高空低温环境里,冰晶比水滴更容易产生
空气里有凝结核
有人做过试验,如果没有凝结核,空气里的水汽,过饱和到相对湿度500%以上的程度,才有可能凝聚成水滴。但这样大的过饱和现象在自然大气里是不会存在的。所以没有凝结核的话,我们地球上就很难能见到雨雪。凝结核是一些悬浮在空中的很微小的固体微粒。最理想的凝结核是那些吸收水分最强的物质微粒。比如说海盐、硫酸、氮和其它一些化学物质的微粒。所以我们有时才会见到天空中有云,却不见降雪,在这种情况下人们往往采用人工降雪。
雪是大量白色不透明冰晶(雪晶)和其聚合物(雪团)组成的降水,由大气中的水蒸气直接凝华或水滴直接凝固而成,也是水在固态下存在的一种形式。雪只会在很冷的温度及温带气旋的影响下才会出现,多呈六角形,花样繁多。
大凡物事都有几种别名,雪花也有许多别称,这些别称通常都出自古代诗人的名句,比如“银粟”(独往独来银粟地———宋·杨万里诗)、“玉尘”(东风散玉尘———唐·白居易诗)、“玉龙”(岘山一夜玉龙寒———唐·吕岩诗)、“六出”(六出飞花入户时———唐·高骈诗)。雪花是六角形的,这一点是在中国最早见诸文字的。西汉时《韩诗外传》曰:“凡草木之花多五出,雪花独六出。”雪花虽然都是六角形,但细分起来有20000多种具有微小差别的图案。
形状简介
雪(snow)是由大量白色不透明的冰晶(雪晶)和其聚合物(雪团)组成的降水。
雪之梅
水是地球上各种生灵存在的根本,水的变化和运动造就了我们今天的世界。在地球上,水是不断循环运动的,海洋和地面上的水受热蒸发到天空中,这些水汽又随着风运动到别的地方,当它们遇到冷空气,形成降水又重新回到地球表面。这种降水分为两种:一种是液态降水,这就是下雨;另一种是固态降水,这就是下雪或下冰雹等。
雪大多降自雨层云和高层云,降水强度变化较慢;冷天积雨云的降雪有阵性特征,称为阵雪。
降雪由大量不同大小的雪晶组成,一般小的比较多。为了描述同时下落的雪晶群体的大小分布特征,常用雪晶谱或雪晶溶化后的溶液谱。
雪晶主要是在云中凝华增大的,首先在冷云中通过冰核的作用产生冰晶,通过凝华(冰晶过程)长大成雪晶,以后还能撞冻过冷水滴而长大。雪晶撞冻过冷水滴很多时,外形会改变。雪晶具有各种各样的形状,这同它们生长环境的温度和湿度有关。
降雪量同所有降水量一样,用相当的水层厚度来度量,单位是mm。实用上有时也用降雪在平地上所累积的深度来度量,称为积雪深度。
雪花多呈六角形,花样之所以繁多,是因为冰的分子以六角形为最多,对于六角形片状冰晶来说,由于它
各种雪花的形状
的面上、边上和角上 的曲率不同,相应地具有不同的饱和水汽压,其中角上的饱和水汽压最大,边上次之,平面上最小。在实有水汽压相同的情况下,由于冰晶各部分饱和水汽压不同,其凝华增长的情况也不相同。例如当实有水汽压仅大于平面的饱和水汽压时,水汽只在面上凝华,形成的是柱状雪花。当实有水汽压大于边上的饱和水汽压时,边上和面上都会发生凝华。由于凝华的速度还与曲率有关,曲率大的地方凝华较快,故在冰晶边上凝华比面上快,多形成片状雪花。当实有水汽压大于角上的饱和水汽压时,虽然面上、边上、角上都有水汽凝华,但尖角处位置突出。水汽供应最充分,凝华增长得最快,故多形成枝状或星状雪花。再加上冰晶不停地运动,它所处的温度和湿度条件也不断变化,这样就使得冰晶各部分增长的速度不一致,形成多种多样的雪花。
导读:每年冬天,气温下降到一定温度就会下雪,很多人不知道雪是怎么形成的,也不知道雪是什么形状的,下面就和爱秀美我一起来了解下吧!
雪是怎么形成的气温在下降到一定气温时,通常在零度以下,会下雪,你知道雪是怎么来的吗?雪是怎么形成的?在混合云中,由于冰水共存使冰晶不断凝华增大,成为雪花。当云下气温低于 0℃时,雪花可以一直落到地面而形成降雪。如果云下气温高于 0℃时,则可能出现雨夹雪。雪花的形状极多,有星状、柱状、片状等等,但基本形状是六角形。雪花之所以多呈六角形,花样之所以繁多,是因为冰的分子以六角形为最多,对于六角形片状冰晶来说,由于它的面上、边上和角上的曲率不同,相应地具有不同的饱和水汽压,其中角上的饱和水汽压最大,边上次之,平面上最小。在实有水汽压相同的情况下,由于冰晶各部分饱和水汽压不同,其凝华增长的情况也不相同。例如当实有水汽压仅大于平面的饱和水汽压时,水汽只在面上凝华,形成的是柱状雪花。当实有水汽压大于边上的饱和水汽压时,边上和面上都会发生凝华。由于凝华的速度还与曲率有关,曲率大的地方凝华较快,故在冰晶边上凝华比面上快,多形成片状雪花。当实有水汽压大于角上的饱和水汽压时,虽然面上、边上、角上都有水汽凝华,但尖角处位置突出,水汽供应最充分,凝华增长得最快,故多形成枝状或星状雪花。再加上冰晶不停地运动,它所处的温度和溼度条件也不断变化,这样就使得冰晶各部分增长的速度不一致,形成多种多样的雪花。
雪是什么形状的雪是呈六角形的花的形状,而且各个六角形还不一样,仔细看雪的形状大约有十几种,雪花大都是六角形的,这是因为雪花属于六方晶系。云中雪花"胚胎"的小冰晶,主要有两种形状。一种呈六棱体状,长而细,叫柱晶,但有时它的两端是尖的,样子像一根针,叫针晶。另一种则呈六角形的薄片状,就像从六棱铅笔上切下来的薄片那样,叫片晶。雪花的形状极多,每片雪花都是一幅极其精美的图案,连许多艺术家都赞叹不止。
雪花是由小冰晶增大变来的,而冰的分子以六角形的为最多,因而形成雪花多是六角形的,并且每一片雪花的形状没有一模一样的。雪花形状的多种多样,则与它形成时的水汽条件有密切的关系。对于六角形片状冰晶来说,由于它面上、边上和角上的弯曲程度不同,相应地具有不同的饱和水汽压,其中角上的饱和水汽压最大,边上次之,平面上最小。
以上就是关于冬天为什么会有雪全部的内容,包括:冬天为什么会有雪、自然界中的雪是如何形成的、雪花怎么形成的等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!