2的倍数的特征:均为偶数,也就是个位是0、2、4、6、8的整数;
3的倍数的特征:数字和是3的倍数;
5的倍数的特征:个位是0或5的整数;
同时是2、3、5的倍数的特征:个位是0且数字和是3的倍数。
一个整数能够被另一个整数整除,那么这个整数就是另一整数的倍数。
因数,或称为约数 ,数学名词。定义:整数a除以整数b(b≠0) 的商正好是整数而没有余数,我们就说b是a的因数。0不是0的因数
因数,数学名词。
假如ab=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,我们称c为a、b的倍数。在研究因数和倍数时,不考虑0。
一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
一个数除以另一数所得的商。如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。 注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
扩展资料
注:以下特征是就整数的十进制表示法而言。
2的倍数
一个数的末尾是偶数(0,2,4,6,8),这个数就是2的倍数。
如3776。3776的末尾为6,是2的倍数。3776÷2=1888 [1]
3的倍数
一个数的各位数之和是3的倍数,这个数就是3的倍数。
4926。(4+9+2+6)÷3=7,是3的倍数。4926÷3=1642 [1]
4的倍数
一个数的末两位是4的倍数,这个数就是4的倍数。
2356。56÷4=14,是4的倍数。2356÷4=589 [1]
5的倍数
一个数的末尾是0或5,这个数就是5的倍数。
7775。7775的末尾为5。7775÷5=1555 [1]
6的倍数
一个数只要能同时被2和3整除,那么这个数就能被6整除。
7的倍数
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
8的倍数
一个数的末三位是8的倍数,这个数就是8的倍数。
7256。256÷8=32,是8的倍数。7256÷8=907
9的倍数
若一个整数的数字和能被9整除,则这个整数能被9整除。
10的倍数
若一个整数的末位是0,则这个数能被10整除。
11的倍数
⑴若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。如264、3080和95949392、2+4-6=11×0,3+8-0-0=11×1,9×4-(5+4+3+2)=11×2,264、308和95949392都能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理。过程唯一不同的是:倍数不是2而是1。
⑵将一个数从个位开始两两分隔,若所有分隔开的数和为11的倍数,则这个数为11的倍数(如32571,分隔成3 25 71,3+25+71=99,99为11倍数,所以32571是11的倍数)
12的倍数
若一个整数能被3和4整除,则这个数能被12整除。
13的倍数
若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
17的倍数
若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数。
19的倍数
若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数
23的倍数
若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除
25的倍数
两位数以上(不包含两位数),看末两位是否是25的倍数。
125的倍数
三位数以上(不包含三位数),看后三位是否是125的倍数。
合数的倍数
其实就是质数的乘积,只要掌握了一些质数的倍数,一些合数的倍数也会掌握了。如上文提到的4、6、8、12。
参考资料倍数_百度百科
因数和倍数是相对的,倍数一般比自己大,因数一般比自己小。
1、因数,或称为约数,数学名词。定义:整数a除以整数b(b≠0) 的商正好是整数而没有余数,我们就说b是a的因数,0不是0的因数。
2、倍数,一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
倍数和因数的关系
一个整数与另一个整数之间的关系都可以用约数和倍数表示,"倍"和"倍数"是两个不同的概念,“倍”指的是两个数相除时所得的商,然而"倍数"仅仅是指一个数字概念,这个概念是相对于约数而言的,后者表示是一个可以被自然数整除的数字。
当一组数据中出现了一个公有的约数时,这个约数就是这组数据的公约数,其中最大的约数就是这组数据的最大公约数,一组数据中出现了公有的倍数时,称为这些数字的公倍数,其中最小的倍数,称为这些数字中的最小公倍数。
倍数和比值不一样的。
倍数的概念:
①一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
②一个数除以另一数所得的商。如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。
③一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。 注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
比值,即两数相比所得的值。
a、 b 两个同类量相除又可叫做比。被除数a 比前项,比的后项除数b 。除号相当于比号,除法的商称比值。非零两数去做比,能用分数来表示。分母它是比后项,比的前项乃分子。除法商成分数值,分数值也是比值。同类两量求比值,统一单位别忘记。比值它是一个数,结果不能是点比。
“倍”与“倍数”虽然只有一字之差,却是两个不同的数学概念,只有真正明确它们各自的内涵和使用范围,才不会在理解和应用上造成混淆。
“倍”指的是数量之间的关系,它建立在乘法概念的基础上,在实际教学中,是从“个”和“份”逐步抽象出来的数学概念。
例如:白布8米,花布的长度有4个8米;或者说把白布8米看作1份,花布的长度是4份。这里所说的“个”与“份”,换成数学语言就是花布的长度是8米的4“倍”,花布的米数是8×4=32(米)。由此可见,“倍”的出现是从生活中的“个”与“份”逐步抽象出来的,是建立在乘法概念的基础上的。
“倍数”指的是数与数之间的联系,它建立在“数的整除性”这个大概念的基础上,是在明确“整除”的前提下,与“约数”同时建立的。
例如:28是7的倍数,因为28能被7整除。28÷7=4,28是7的4倍,如果用乘法表示这三个数的数量关系,则7×4=28,7的4倍是28。由此可见,前者的“倍数”是严格限制在“整除”的范围内,而后者的“倍”只体现在乘法的概念当中,这是两者的明确区别。
以上就是关于2、5、3倍数的概念是什么全部的内容,包括:2、5、3倍数的概念是什么、什么是因数和倍数、五年级因数和倍数是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!