三角形重心的六条性质是什么

二氧化硫化学式2023-04-26  21

1重心到顶点的距离与重心到对边中点的距离之比为2:1。

2重心和三角形3个顶点组成的3个三角形面积相等。

3重心到三角形3个顶点距离的平方和最小。

4在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。

5重心是三角形内到三边距离之积最大的点。

6三角形ABC的重心为G,点P为其内部任意一点,则3PG²=(AP²+BP²+CP²)-1/3(AB²+BC²+CA²)。

7在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,则AB/AP+AC/AQ=3。

8从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(AB²+BC²+CA²)为半径的圆周上。

三角形重心的定义是三角形三条中线的交点。

数学上的重心是指三角形的三条中线的交点,其证明定理有燕尾定理或塞瓦定理,应用定理有梅涅劳斯定理、塞瓦定理。

对于均质物体,如在几何形体上具有对称面、对称轴或对称中心,则该物体的重心或形心必在此对称面、对称轴或对称中心上。下面介绍几种常用的确定重心位置的方法。

1、重心到顶点的距离与重心到对边中点的距离之比为2:1

2、重心和三角形3个顶点组成的3个三角形面积相等

3、重心到三角形3个顶点距离的和最小(等边三角形)

4、三角形内到三边距离之积最大的点

重心的性质及证明方法

1、重心到顶点的距离与重心到对边中点的距离之比为2:1三角形ABC,E、F是AB,AC的中点EC、FB交于G过E作EH平行BFAE=BE推出AH=HF=1/2AF AF=CF 推出HF=1/2CF 推出EG=1/2CG

2、重心和三角形3个顶点组成的3个三角形面积相等证明方法:在▲ABC内,三边为a,b,c,点O是该三角形的重心,AOA1、BOB1、COC1分别为a、b、c边上的中线根据重心性质知,OA1=1/3AA1,OB1=1/3BB1,OC1=1/3CC1过O,A分别作a边上高h1,h可知h1=1/3h 则,S(▲BOC)=1/2×h1a=1/2×1/3ha=1/3S(▲ABC);同理可证S(▲AOC)=1/3S(▲ABC),S(▲AOB)=1/3S(▲ABC) 所以,S(▲BOC)=S(▲AOC)=S(▲AOB) 3、重心到三角形3个顶点距离的和最小(等边三角形)

证明方法:设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3) 平面上任意一点为(x,y) 则该点到三顶点距离和为:(x1-x)^2+(y1-y)^2+(x2-x)^2+(y2-y)^2+(x3-x)^2+(y3-y)^2 =3x^2-2x(x1+x2+x3)+3y^2-2y(y1+y2+y3)+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2 =3(x-1/3(x1+x2+x3))^2+3(y-1/3(y1+y2+y3))^2+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2 显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3(重心坐标)时 上式取得最小值x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2 最终得出结论

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3); 空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3 5、三角形内到三边距离之积最大的点

重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1,重心和三角形3个顶点组成的3个三角形面积相等,重心到三角形3个顶点距离的平方和最小。

三角形重心是三角形三中线的交点。当几何体为匀质物体且重力场均匀时,重心与该形中心重合。

扩展资料:

证明一

1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

例:已知:△ABC,E、F是AB,AC的中点。EC、FB交于G。

求证:EG=1/2CG

证明:过E作EH∥BF交AC于H。

∵AE=BE,EH//BF

∴AH=HF=1/2AF(平行线分线段成比例定理)

又∵ AF=CF

∴HF=1/2CF

∴HF:CF=1/2

∵EH∥BF

∴EG:CG=HF:CF=1/2

∴EG=1/2CG

方法二 连接EF

利用三角形相似

求证:EG=1/2CG 即证明EF=1/2BC

利用中位线可证明EF=1/2BC利用中位线可证明EF=1/2BC

2、重心和三角形3个顶点组成的3个三角形面积相等。

证明方法:

在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA'、BOB'、COC'分别为a、b、c边上的中线。根据重心性质知:

OA'=1/3AA'

OB'=1/3BB'

OC'=1/3CC'

过O,A分别作a边上高OH',AH

可知OH'=1/3AH

则,S△BOC=1/2×OH'a=1/2×1/3AHa=1/3S△ABC

同理可证S△AOC=1/3S△ABC

S△AOB=1/3S△ABC

所以,S△BOC=S△AOC=S△AOB

三角形只有五种心

重心:三中线的交点;

垂心:三高的交点;

内心:三内角平分线的交点,是三角形的内切圆的圆心的简称;

外心:三中垂线的交点;

旁心:一条内角平分线与其它二外角平分线的交点(共有三个)是三角形的旁切圆的圆心的简称

当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心

以上就是关于三角形重心的六条性质是什么全部的内容,包括:三角形重心的六条性质是什么、三角形的重心的定义、三角形重心的性质等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3685326.html

最新回复(0)