空间向量如何计算

五笔输入法口诀2023-04-25  25

空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模(moduius)。

规定,长度为0的向量叫做零向量,记为0

模为1的向量称为单位向量。

与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a

方向相等且模相等的向量称为相等向量。

第一步:

按照图形建立三维坐标系O-xyz

之后,将点的坐标带进去,求出所需向量的坐标。

第二步:

求平面的法向量:

令法向量n=(x,y,z)

因为法向量垂直于此平面

所以n垂直于此面内两相交直线(其方向向量为a,b)

可列出两个方程

n·a=0,n·b=0

两个方程,三个未知数

然后根据计算方便

取z(或x或y)等于一个数(如:1,√2等)

代入即可求出面的一个法向量n的坐标了

会求法向量后

1斜线与平面所成的角就是求出斜线的方向向量与平面的法向量n的夹角,所求角为上述夹角的余角或者夹角减去π/2

2点到平面的距离就是求出该面的法向量n在平面上任取(除被求点在该平面的射影外)一点,

求出平面外那点和你所取的那点所构成的向量,记为a

点到平面的距离就是法向量n与a的数量积的绝对值|n·a|除以法向量的模|n|即得所求

3二面角的求法就是求出两个平面的法向量

可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积

:cos<n,m>=|n·m|/(|n||m|)

那么二面角就是上面求的两法向量的夹角或者它的补角。

4设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,ν

线线平行

l∥m<=>a∥b

<=>

a=kb

线面平行

l∥α<=>a⊥μ

<=>a·μ=0

面面平行

α∥β<=>μ∥ν

<=>μ=kν

线线垂直

l⊥m<=>a⊥b

<=>a·b=0

线面垂直

l⊥α

<=>a∥μ

<=>

a=kμ

面面垂直

α⊥β<=>

μ⊥ν

<=>μ·ν=0

5向量的坐标运算:设a=(x1,y1),b=(x2,y2),则

1|a|=√(x1²+y1²)

2a+b=(x1+x2,y1+y2)

3a-b=(x1-x2,y1-y2)

4ka=k(x1,y1)=(kx1,ky1)

5a·b=x1x2+y1y2

6a∥b<=>

x1y2=x2y1(一般写为:x1y2-x2y1=0)

7a⊥b<=>

a·b=0<=>x1x2+y1y2=0

8cos<a,b>=(a·b)/(|a|·|b|)=(x1x2+y1y2)

/

[

√(x1²+y1²)·√(x2²+y2²)

]

注:x1中的1为下标,以此类推

科学是人类的共同财富,而真正科学家的任务就是丰富这个全人类都能受益的知识宝库。下面是我为大家整理的高二数学空间向量的公式及定理,希望大家喜欢。

空间向量

一、空间向量知识点

1空间向量的概念:

定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。

具有大小和方向的量叫做向量注:

⑴空间的一个平移就是一个向量

⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量

⑶空间的两个向量可用同一平面内的两条有向线段来表示

ⅰ定理:如果三个向量 不共面,那么对于空间任一向量 ,存在唯一的有序实数组x、y、z,使 。且把 叫做空间的一个基底, 都叫基向量。

ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。

ⅲ 单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用 表示。

ⅳ 空间四点共面:设O、A、B、C是不共面的四点,则对空间中任意一点P,都存在唯一的有序实数组x、y、z,使 。

2空间向量的运算

二、复习点睛:

1、立体几何初步是侧重于定性研究,而空间向量则侧重于定量研究。空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。

2、根据空间向量的基本定理,出现了用基向量解决立体几何问题的向量法,建立空间直角坐标系,形成了用空间坐标研究空间图形的坐标法,它们的解答通常遵循“三步”:一化向量问题,二进行向量运算,三回到图形问题。其实质是数形结合思想与等价转化思想的运用。

3、实数的运算与向量的运算既有联系又有区别,向量的数量积满足交换律和分配律,但不满足结合律,因此在进行数量积相关运算的过程中不可以随意组合。值得一提的是:完全平方公式和平方差公式仍然适用,数量积的运算在许多方面和多项式的运算如出一辙,尤其去括号就显得更为突出,下面两个公式较为常用,请务必记住并学会应用: 。

2、空间向量的坐标表示:

(1)空间直角坐标系:

①空间直角坐标系O-xyz,在空间选定一点O和一个单位正交基底 ,以点O为原点,分别以 的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,点O叫做原点,向量 叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面,yOz平面,zOx平面。

②右手直角坐标系:右手握住z轴,当右手的四指从正向x轴以90°角度转向正向y轴时,大拇指的指向就是z轴的正向;

③构成元素:点(原点)、线(x、y、z轴)、面(xOy平面,yOz平面,zOx平面);

④空间直角坐标系的画法:作空间直角坐标系O-xyz时,一般使∠xOy=135°(或45°), ∠yOz=90°,z轴垂直于y轴,z轴、y轴的单位长度相同,x轴上的单位长度为y轴(或z轴)的一半;

(2)空间向量的坐标表示:

①已知空间直角坐标系和向量 ,且设 为坐标向量(如图),

由空间向量基本定理知,存在唯一的有序实数组 叫做向量在此直角坐标系中的坐标,记作 。

②在空间直角坐标系O-xyz中,对于空间任一点A,对应一个向量 ,若 ,则有序数组(x,y,z)叫做点在此空间直角坐标系中的'坐标,记为A(x,y,z),其中x叫做点A的横坐标, y叫做点A的纵坐标,z叫做点A的竖坐标,写点的坐标时,三个坐标间的顺序不能变。

③空间任一点的坐标的确定:过P分别作三个与坐标平面平行的平面(或垂面),分别交坐标轴于A、B、C三点,│x│=│OA│,│y│=│OB│,│z│=│OC│,当 与 的方向相同时,x>0,当 与 的方向相反时,x<0,同理可确y、z(如图)。

④规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应。

⑤一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(3)空间向量的直角坐标运算:

⑦空间两点间距离: ;

⑧空间线段 的中点M(x,y,z)的坐标: ;

⑨球面方程:

4、过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位。这三条轴分别叫做z轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴。通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。

5、空间直角坐标系中的特殊点:

(1)点(原点)的坐标:(0,0,0);

(2)线(坐标轴)上的点的坐标:x轴上的坐标为(x,0,0),y轴上的坐标为(0,y,0),z轴上的坐标为(0,0,z);

(3)面(xOy平面、yOz平面、zOx平面)内的点的坐标:平面上的坐标为(x,y,0)、平面上的坐标为(0,y,z)、平面上的坐标为(x,0,z)

6、要使向量 与z轴垂直,只要z=0即可。事实上,要使向量 与哪一个坐标轴垂直,只要向量 的相应坐标为0即可。

7、空间直角坐标系中,方程x=0表示yOz平面、方程y=0表示zOx平面、方程z=0表示xOy平面,方程x=a表示平行于平面yOz的平面、方程y=b表示平行于平面zOx的平面、方程z=c表示平行于平面xOy平面;

8、只要将 和 代入,即可证明空间向量的运算法则与平面向量一样;

9、由空间向量基本定理可知,空间任一向量均可以由空间不共面的三个向量生成任意不共面的三个向量 都可以构成空间的一个基底,此定理是空间向量分解的基础。

用空间向量处理某些立体几何问题,可以为学生提供新的视角。在空间特别是空间直角坐标系中引入空间向量,可以为解决三维图形的形状、大小及位置关系的几何问题增加一种理想的代数工具,从而提高学生的空间想象能力和学习效率。

高中数学新教材中讲述空间向量的部分约占14课时(当然它的应用不止在这14课时),它被包含在第九章“直线、平面、简单几何体”(简称“9(B)”)中,含有空间向量的高二下学期的数学教科书简称“第二册(下B)”;与它平行,仍用传统方法来阐述高中立体几何内容的教科书简称“第二册(下A)”。两本教科书第九章的章名一样,并且都用36课时进行教学。

综上,“空间向量”这部分内容具有“必学”和“选学”两重性。按照大纲第10页的脚注规定“直线、平面、简单几何体的教学内容和教学目标在9(A)和9(B)两个方案中只选一个执行”,9(B)具有选学的性质;但大纲把“直线、平面、简单几何体”作为必学内容,如果学生不按“第二册(下A)”教科书来学习,那么空间向量对于他们就是必学内容。

“空间向量”这部分内容,大致可分成“空间向量及其运算”与“空间向量的应用”这两个模块。

(1)空间向量及其运算。包括:

①经历向量及其运算由平面向空间推广的过程。

②理解空间向量的概念,掌握空间向量的加法、减法、数乘及其坐标表示,了解空间向量基本定理及其意义;掌握空间坐标系,能将空间向量用坐标轴上的单位向量线性表示,掌握空间向量的坐标表示。

③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线或垂直。

(2)空间向量的应用。包括:

①理解直线的方向向量、平面的法向量、向量在平面内的射影等概念。

②能用向量语言表述线线、线面、面面的垂直、平行关系。

③能用向量方法证明有关线、面位置关系的一些定理。

④能用空间坐标系与向量方法解决夹角与距离的计算问题,体会向量方法在研究几何问题中的作用。

教学中,应引导学生运用类比的方法,经历向量及其运算由平面向空间推广的过程,应注意由于维数增加所带来的影响。

以上就是关于空间向量如何计算全部的内容,包括:空间向量如何计算、高二数学空间向量的公式及定理、空间向量在高中数学中具有怎样的地位和作用等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3672418.html

最新回复(0)