人工智能原理及应用

油炸食品2023-04-25  22

《人工智能原理与应用》既详细介绍了大量的基本概念、思想和算法,也描述了各研究方向最前沿的进展,并对中国在人工智能领域的贡献给出了一个概要性的介绍。前6章都附有习题,用于指导学生自学及加深对基本概念和技术的理解及掌握。最后一章属于拓展阅读部分,旨在让读者能够较快地了解人工智能在教育教学领域中的应用。全书讲述力求由浅入深,通俗易懂,理论上具有完整性和系统性,强调基本原理和基本技术配以大量的实例、图表,易于教学,便于自学。《人工智能原理与应用》可作为信息领域与相关领域的高等院校本科生和研究生的教科书或教学辅导书目,也可以作为相关领域的科研与工程技术人员的参考书。

这本书有很详细的介绍>

其实游戏背后的秘密非常简单,然而也是复杂的,因为逻辑由你做主的。当你开始游戏的时候,你心里想的某个东西已经存储在数据库里面了(因为游戏已经被玩过无数次了,如果系统没猜中的话,它就会让你提交你的答案),然后系统根据你的回答,一步步向你想的东西逼近。世界上大多数的答案都能用相似的问题来提问。 20Q 通过把你的回答和最受欢迎的答案进行比较,来猜测你在想的东西, 20Q 正是用这样的方法来给出下一个提问的。

人工智能鉴黄是通过深度学习目标检测、图像分类、特征检索等技术对图像中的局部和全局信息进行分析,捕获不同类型的色情内容,此外系统还会通过OCR、标志识别、水印检测等技术手段协助判断隐藏在图像视频中的敏感内容,包括色情微信推广、色情APP、个人****等。

在算法类型上,图像识别中最常见的就是图像分类算法,从AlexNet到VGG,从ResNet到DenseNet,目前的图像分类算法可以较为准确地区分ImageNet的1000类数据,鉴黄本身也是对输入图像做分类,因此采用图像分类算法就是顺其自然的事。

其次,目标检测算法可以用来检测色情图像中的露点部位,也是比较可靠的手段。此外,还有基于业务层面构造的特征和逻辑,比如是否有人、皮肤的面积等,用来辅助判断,在一些情况下确实是有效的。

鉴黄的历史:

在计算机的“远古时代”,其实也就是十几年前吧,我们识别黄图的做法简单粗暴:人工审核。别小看了这个方法,其实针对当时的网络环境(带宽小,产品少,数据也少),效果还是很不错的。一天几万的量,安排几个人肉眼盯着看,发现有不良的人工删掉就好了。

后来,互联网产品普及率高了,网络数据量暴增,一个产品一天出现几百万的量也是很正常的情况,这个时候想要靠堆人力去完成审核几乎不可能了。幸好相应的计算机视觉技术也有进步了,我们用肤色识别算法过滤掉一些没那么多“**”内容的,剩下的再进入到人工审核,可以大大节约审核量。据统计,经过机器肤色识别过滤后大约只有20%的还需要人工审核。

等到移动互联网普及,各种类型的网络数据量暴增,人工审核连20%的数据量也无法承受了,加上视频、直播等业务和数据的爆发式增长,迫切需要一个更加有效的方案来解决审核的问题。很自然的,我们也紧跟人工智能的技术热潮开始研发机器学习的鉴黄系统,并且取得了显著成果。

A 算法是启发式算法重要的一种,主要是用于在两点之间选择一个最优路径,而A 的实现也是通过一个估值函数

上图中这个熊到树叶的 曼哈顿距离 就是蓝色线所表示的距离,这其中不考虑障碍物,假如上图每一个方格长度为1,那么此时的熊的曼哈顿距离就为9

起点(X1,Y1),终点(X2,Y2),H=|X2-X1|+|Y2-Y1|

我们也可以通过几何坐标点来算出曼哈顿距离,还是以上图为例,左下角为(0,0)点,熊的位置为(1,4),树叶的位置为(7,1),那么H=|7-1|+|1-4|=9。

还是以上图为例,比如刚开始熊位置我们会加入到CLOSE列表中,而熊四周它可以移动到的点位我们会加入到OPEN列表中,并对熊四周的8个节点进行F=G+H这样的估值运算,然后在这8个节点中选中一个F值为最小的节点,然后把再把这个节点从OPEN列表中删除,加入到Close列表中,从接着在对这个节点的四周8个节点进行一个估值运算,再接着依次运算,这样说大家可能不是太理解,我会在下边做详细解释。

从起点到终点,我们通过A星算法来找出最优路径

我们把每一个方格的长度定义为1,那从起始点到5位置的代价就是1,到3的代价为141,定义好了我们接着看上图,接着运算

第一步我们会把起始点四周的点加入OPEN列表中然后进行一个估值运算,运算结果如上图,这其中大家看到一个小箭头都指向了起点,这个箭头就是指向父节点,而open列表的G值都是根据这个进行计算的,意思就是我从上一个父节点运行到此处时所需要的总代价,如果指向不一样可能G值就不一样,上图中我们经过计算发现1点F值是741是最小的,那我们就选中这个点,并把1点从OPEN列表中删除,加入到CLOSE列表中,但是我们在往下运算的时候发现1点的四周,2点,3点和起始点这三个要怎么处理,首先起始点已经加入到了CLOSE,他就不需要再进行这种运算,这就是CLOSE列表的作用,而2点和3点我们也可以对他进行运算,2点的运算,我们从1移动到2点的时候,他需要的代价也就是G值会变成241,而H值是不会变的F=241+7=941,这个值我们发现大于原来的的F值,那我们就不能对他进行改变(把父节点指向1,把F值改为941,因为我们一直追求的是F值最小化),3点也同理。

在对1点四周进行运算后整个OPEN列表中有两个点2点和3点的F值都是741,此时我们系统就可能随机选择一个点然后进行下一步运算,现在我们选中的是3点,然后对3点的四周进行运算,结果是四周的OPEN点位如果把父节点指向3点值时F值都比原来的大,所以不发生改变。我们在看整个OPEN列表中,也就2点的741值是最小的,那我们就选中2点接着运算。

我们在上一部运算中选中的是1点,上图没有把2点加入OPEN列表,因为有障碍物的阻挡从1点他移动不到2点,所以没有把2点加入到OPEN列表中,整个OPEN列表中3的F=8是最小的,我们就选中3,我们对3点四周进行运算是我们发现4点经过计算G=1+1=2,F=2+6=8所以此时4点要进行改变,F变为8并把箭头指向3点(就是把4点的父节点变为3),如下图

我们就按照这种方法一直进行运算,最后 的运算结果如下图

而我们通过目标点位根据箭头(父节点),一步一步向前寻找最后我们发现了一条指向起点的路径,这个就是我们所需要的最优路径。 如下图的白色选中区域

但是我们还要注意几点

最优路径有2个

这是我对A算法的一些理解,有些地方可能有BUG,欢迎大家指出,共同学习。

以上就是关于人工智能原理及应用全部的内容,包括:人工智能原理及应用、人工智能的原理是什么、20Q的人工智能原理是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3666135.html

最新回复(0)