高斯定理怎么用

干辣椒2023-04-24  29

高斯定理是静电学中的一个重要定理,应用高斯定理时,常把电荷或电场的对称性作为应用高斯定理求电场强度的条件,但实际并非如此,以高斯定理的数学表达式为基础可以阐明:对称性不是应用高斯定理求场强的条件根据数学中的高斯公式给出了静电场、涡旋电场和静磁场高斯定理的严格证明,得到了力线数密度与电场强度大小以及磁感应强度大小的定量关系,指出用力线法证明高斯定理的方法是不合理的(1)直接利用高斯定理求场强 高斯定理是描述静电场性质的基本定理之一,在静电场中是普遍成立的。但是,由于它对静电场的描述是不完备的,因此利用它求场强 是有条件的,它要求带电系统及其电场分布一定具有某种空间对称性。实际上,只有当场强分布具有球对称性(如均匀带电球面、球壳和球体等)、轴对称性(如无限长均匀带电直线、圆柱面、圆柱筒和圆柱体等)或者平面对称性(如无限大均匀带电平面或平板等)时,才能直接利用高斯定理求场强分布。在求场强时,首要任务是根据场分布的对称性,选取合适的高斯面。

(2)利用高斯定理求角某些规则形状曲面的电场强度通量时,可首先构造一高斯面,要求其中部分曲面为待求曲面,其余部分曲面的电通量是已知的或易于求得的,再经过简单的数学运算便可求解。从高斯定理看电力线的性质:高斯定理说明正电荷是发出E通量的源,负电荷是吸收E通量的源。

(1)若闭合面内存在正(负)电荷,则通过闭合面的E通量为正(负),表明有电力线从面内(面外)穿出(穿入),即正(负)源电荷发射(吸收)电场线。

(2)若闭合面内没有电荷,则通过闭合面的E通量为零,意味着有多少电场线穿入就有多少电场线穿出,说明在没有电荷的区域内电场线不会中断,又若闭合面内静电荷为零,则有多少电场线进入面内终止于负电荷,就会有相同数目的电场线从面内正电荷出发到外面。

(3)在闭合面内,电荷空间分布的变化将改变闭合面上各点场强的大小和方向,但只要电量相同,就不会改变通过整个闭合面的E通量。

(4)在闭合面外,有无电荷及其如何分布,将会影响闭合面上各处场强的大小和方向,但对通过整个闭合面的E通量没有贡献,即面外电荷会影响通过闭合面的电场线的形状和分布,却不会改变通过闭合面的电场线的数目

高斯定理的应用:

高斯定理是一条反映静电场规律的普遍定理,在进一步研究电学时,这条定理很重要。在这里,我们只应用它来计算某些对称带电体所激发的电场中的场强,在这些情况中,它比应用电场强度叠加原理来计算场强要方便得多。下面举例说明高斯定理的这种应用。

(1)在电场强度已知时,求出任意区域内的电荷

(2)当电荷分布具有某种特殊对称性时,用高斯定理求出该种电荷系统的电场分布例1:求均匀带正电球体内外的电场分布,设球体带电量为q,半径为R。应用电通量的定义和高斯定理联立求解。(解略) 讨论:在球面外(r>R),点P的场强为:

方向沿半径指向球外(如q<0,则沿半径指向球内)。

 在球面内(r<R),点P的场强为:综上所述,可得如下结论:均匀带电球面外的场强,与将球面上电荷全部集中于中心的点电荷所激发的场强一样;球面内任一点的场强则为零。均匀带电球面的场强分布,可用其大小E与距离r的关系曲线来表示。这条曲线E-r 在r=R 处是间断的,即场强大小E的分布在该处是不连续的。例2:均匀带正电无限长细棒的场强其线电荷密度为场强的大小为:例3:均匀带正电的无限大平面薄板的场强。(略)

是一个重要的积分公式高斯公式又叫高斯定理:矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式是研究场的重要公式之一

;     高斯公式的三个条件是:空间闭区域;具有一阶连续偏导数;曲面外侧。高斯定律是在静电场中,穿过任一封闭曲面的电场强度通量只与封闭曲面内的电荷的代数和有关,且等于封闭曲面的电荷的代数和除以真空中的电容率。

      该定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。静电场中通过任意闭合曲面(称高斯面)S的电通量等于该闭合面内全部电荷的代数和除以真空中的电容率,与面外的电荷无关。求解电场强度E可用库仑定律,也可用高斯定理。

用高斯公式得

I = ∫∫∫<Ω>(x^2+y^2+z^2)dv = ∫<0, π>dφ∫<0, 2π>dθ∫<0, R>r^2 r^2sinφ dr

= 2π∫<0, π>sinφdφ[r^5/5]<0, R>

= (2/5)πR^5[-cosφ]<0, π> = (4/5)πR^5

∮是闭合路径的曲线积分;双重积分符号中间加个圆表示积分区域是封闭的。符号表示的意思不同,所以在不同的题中用不同的符号。

高斯定理是矢量分析的重要定理之一。电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的位置分布情况无关,与封闭曲面外的电荷亦无关。

在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。高斯定理反映了静电场是有源场这一特性。

高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的平方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。

扩展资料:

高斯定理延伸:

1、高斯定理高斯定理2(代数学基本定理)

定理:凡有理整方程f(x)=0至少有一个根。

推论:一元n次方程f(x)=a^0x^n+a^1x^(n-1)++a^(n-1)x+a^n=0有且只有n个根(包括虚根和重根)。

2、高斯定理高斯定理3(数论)

正整数n可被表示为两整数平方和的充要条件为n的一切形如4k+3形状的质因子的幂次均为偶数。

高斯定理(Gauss' law)也称为高斯通量理论(Gauss' flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、

奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。

在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。

高斯定律(Gauss' law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。

扩展资料:

高斯定理延伸

1、高斯定理2

(代数学基本定理)

定理:凡有理整方程

 至少有一个根。

推论:一元n次方程

有且只有n个根(包括虚根和重根)。

2、高斯定理3

(数论)

正整数n可被表示为两整数平方和的充要条件为n的一切形如4k+3形状的质因子的幂次均为偶数。

参考资料:

百度百科-高斯定理

以上就是关于高斯定理怎么用全部的内容,包括:高斯定理怎么用、高斯定理公式是什么、高斯公式的三个条件等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3662681.html

最新回复(0)