实验室常见的萃取方法 实验室常见的萃取方法有哪些

山东历史名人2023-04-24  26

1、索氏提取法:索氏提取法是一种经典萃取方法,在当前很多实验室中的有机化合物样品提取的检测项目中仍有着广泛的应用。美国环保署(EPA)将其作为萃取有机物的标准方法之一(EPA3540C);国标方法中也用使用索式提取法作为提取方法。索氏提取主要优点是不需要使用特殊的仪器设备、且操作方法简单易行,很多实验室都可以得以实现、使用成本较低。索氏提取主要的缺点是溶剂消耗量大、耗时也较长等。

2、超声波提取法:超声波提取一般有利用超声波清洗器提取的,也有专门探头式提取器。超声波提取具有不需要加热、操作简单、节省时间和提取效率高等优点,目前在土壤提取的标准中也推荐使用了此方法。

3、微波萃取法:微波萃取系统采用了能量小化技术,有效的防止了萃取物的分解,并提高了萃取回收率和重现行,现已广泛应用到土壤分析、化工、食品、香料、中草药和化妆品等领域。 微波萃取主要有两类。一类是开放式,另一类是高压密闭式。开放式微波萃取系统优点是一般可制备较大的样品量以及可随时添加萃取试剂,不足之处为溶剂消耗量大,制样过程中可能损失易挥发组分,每次仅制备一个或几个样品,萃取时间相对较长,不易控制萃取温度;而高压密闭式微波萃取,高温高压使目标萃取物与样品基体之间的价键发生断裂,并迫使溶剂进入样品内部,或目标萃取物被样品中极性组分所形成的蒸汽带到样品的外部,促使溶剂与目标萃取物之间的充分接触。这种系统的优点是可控制萃取条件,一般每次可制备数个至数十个样品,由于没有剧烈的化学反应,样品量可以在05克~10克范围,制样过程中不损失易挥发组分和萃取试剂,萃取时间短。

4、超临界流体萃取法:超临界流体萃取(Supercritical Fluid Extraction,SFE),它是利用超临界条件下的气体作萃取剂,从液体或固体中萃取出某些成分并进行分离的技术。超临界条件下的气体,也称为超临界流体(SF),是处于临界温度(Tc)和临界压力(Pc)以上,以流体形式存在的物质。通常有二氧化碳(CO2)、氮气(N2)等。超临界流体萃取具有耗时短、消耗有机溶剂少等优点,所以在农药残留分析样品前处理中,特别在食品及中草药有效成分等天然药物成分的提取中有较多的应用。缺点是设备与工艺要求高,一次性投资比较大。

5、均质提取法(匀浆法):均质提取法(匀浆法),一般对植物样品、食品,尤其是含水量较高的新鲜样品,如蔬菜、水果等使用时较为方便简单。匀浆机就可以。直白点说匀浆提取过程就相当于我们家里打豆浆的过程。几乎所有植物性或动物性样品的初始样品制备阶段都要用到匀浆提取的过程。根据基质和目标物性质的不同,一般使用的提取溶剂以极性溶剂居多,标准方法中以使用乙腈居多。

6、快速溶剂提取法:近些年来,快速溶剂萃取技术得到了广泛的应用,它采用高温高压的形式进行提取,从时间上来说,将传统的十几甚至二十几个小时的提取时间缩短为20~30分钟,使用溶剂量也从几百毫升缩小至十几甚至几毫升。并且由于是自动化仪器控制,每个样品的提取条件完全一致,从而平行性也得到了很大的改善。现在市场上有的自动化产品不仅具有双通道压力溶剂萃取,并且还可实现提取-定量浓缩-在线固相萃取的整套过程,自动化程度非常高,可提高实验室效率。近的“土十条”,在对土壤中有机污染物分析的前处理上都有相应标准,比如,新出的HJ783、743等。

针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。固相萃取操作一般有四步:

1填料保留目标化合物

活化----除去小柱内的杂质并创造一定的溶剂环境。

上样----将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。

淋洗----最大程度除去干扰物。

洗脱----用小体积的溶剂将被测物质洗脱下来并收集。

2填料保留杂质

固相萃取操作一般有三步:

活化--除去柱子内的杂质并创造一定的溶剂环境。

上样--将样品转移入柱,此时大部分目标化合物会随样品基液流出,杂质被保留在柱上,故此步骤要开始收集

洗脱---用小体积的溶剂将组分淋洗下来并收集,合并收集液。

此种情况多用于食品或农残分析中去除色素。

萃取操作及注意事项

1准备

选择较萃取剂和被萃取溶液总体积大一倍以上的分液漏斗。检查分液漏斗的盖子和旋塞是否严密

检查分液漏斗是否泄漏的方法,通常先加入一定量的水,振荡,看是否泄漏

注意:①不可使用有泄漏的分液斗,以保证操作安全 ②盖子不能涂油

2加料

将被萃取溶液和萃取剂分别由分液漏斗的上口倒入,盖好盖子

萃取剂的选择要根据被萃取物质在此溶剂中的溶解度而定,同时要易于和溶质分离开,最好用低沸点溶剂。一般水溶性较小的物质可用石油醚萃取;水溶性较大的可用苯或乙醚l水溶性极大的用乙酸乙酯 液体分为两相

注意:①必要时要使用玻璃漏斗加料

3振荡

振荡分液漏斗,使两相液层充分接触

振荡操作一般是把分液漏斗倾斜,使漏斗的上口略朝下

液体混为乳浊液

注意:①振荡时用力要大,同时要绝对防止液体泄漏

4放气

振荡后。让分液漏斗仍保持倾斜状态,旋开旋塞,放出蒸气或产生的气体,使内外压力平衡

气体放出

注意:①切记放气时分液漏斗的上口要倾斜朝下,而下口处不要有液体

5静置将分液漏斗放在铁环中,静置

静置的目的是使不稳定的乳浊液分层。一般情况须静置10min左右,较难分层者须更长时间静置

液体分为清晰的两层

注意:在萃取时。特别是当溶液呈碱性时,常常会产生乳化现象,影响分离。破坏乳化的方法有:

①较长时间静置 ,

②轻轻地旋摇漏斗,加速分层

⑧若因两种溶剂(水与有机溶剂)部分互溶而发生乳化,可以加入少量电解质(如氯化钠),利用盐析作用加以破坏I若因两相密度差小发生乳化,也可以加入电解质,以增大水相的密度

④若因溶液呈碱性而产生乳化,常可加入少量的稀盐酸或采用过滤等方法消除

根据不同情况,还可以加入乙醇、磺化蓖麻油等消除乳化

分液漏斗萃取操作方法:

1、检验分液漏斗是否漏水,在分液漏斗中装入溶液,再向其中加入萃取剂,振荡。

2、然后将分液漏斗放在铁圈上静置,等待一段时间,使其分层。

3、打开分液漏斗活塞,再打开旋塞,使下层液体从分液漏斗下端放出,待油水界面与旋塞上口相切即可关闭旋塞,把上层液体从分液漏斗上口倒出,即完成了分液漏斗的萃取。

扩展资料:

分液漏斗萃取注意事项:

1、分液漏斗在使用前要将漏斗颈上的旋塞芯取出,涂上凡士林,但不可太多,以免阻塞流液孔。

2、将分液漏斗插入塞槽内转动使油膜均匀透明,且转动自如。然后关闭旋塞,往漏斗内注水,检查旋塞处是否漏水,不漏水的分液漏斗方可使用。

3、使用时,左手虎口顶住漏斗球,用拇指食指转动活塞控制加液。此时玻璃塞的小槽要与漏斗口侧面小孔对齐相通,才便加液顺利进行。

参考资料:百度百科-萃取

萃取和分液:萃取是一种常用的分离液-液混合物的方法,它是利用溶质在互不相溶的溶剂里溶解度的不同(溶质在萃取剂中的溶解度要大于在原溶剂中的溶解度),用一种溶剂把溶质从它与另一溶剂所组成的溶液里提取出来的操作。

分液是把互不相溶的两种液体分开的操作。一般分液都是与萃取配合使用的。

(1)实验仪器

萃取和分液常用的仪器是锥形分液漏斗。

分液漏斗是用普通玻璃制成,有球形、锥形和筒形等多种式样,规格有50、100、150、250毫升等。球形漏斗的颈较长,多用做制气装置中滴加液体的仪器。锥形分液漏斗的颈较短,常用做萃取操作的仪器。

分液漏斗在使用前要将漏斗颈上的旋塞芯取出,涂上凡士林,插入塞槽内转动使油膜均匀透明,且转动自如。然后关闭旋塞,往漏斗内注水,检查旋塞处是否漏水,不漏水的分液漏斗方可使用。漏斗内加入的液体量不能超过容积的3/4。为防止杂质落入漏斗内,应盖上漏斗口上的塞子。放液时,磨口塞上的凹槽与漏斗口颈上的小孔要对准,这时漏斗内外的空气相通,压强相等,漏斗里的液体才能顺利流出。分液漏斗不能加热。漏斗用后要洗涤干净。长时间不用的分液漏斗要把旋塞处擦拭干净,塞芯与塞槽之间放一纸条,以防磨砂处粘连。

(2)实验注意事项

萃取和分液的操作要按下面方法进行:

①将被萃取液倒入分液漏斗里,加入适量萃取剂,这时漏斗内的液体总量不能超过容积的1/2。盖上漏斗口上的磨口塞,用右手压住塞子,左手拇指、食指和中指夹住漏斗颈上的旋塞,将分液漏斗横放,用力振荡,或将分液漏斗反复倒转并振荡。振荡过程中常有气体产生,应及时将漏斗倾斜倒置使液面离开旋塞,扭开旋塞把气体放出。

②把分液漏斗放在铁架台的铁圈上,静置。

③漏斗下放一承受容器如烧杯。打开分液漏斗上口的磨口塞或使塞上的凹槽与漏斗口颈上的小孔对准。

④当漏斗内液体明显分层后,打开旋塞,使下层液体慢慢流入承受器里。下层液体流完后,关闭旋塞。上层液体从漏斗上口倒入另外容器里。

目前萃取方法有哪几种

萃取是利用系统中组分在溶剂中有不同的溶解度来分离混合物的单元操作,利用相似相溶原理,萃取有两种方式:

液-液萃取,用选定的溶剂分离液体混合物中某种组分,溶剂必须与被萃取的混合物液体不相溶,具有选择性的溶解能力,而且必须有好的热稳定性和化学稳定性,并有小的毒性和腐蚀性。如用苯分离煤焦油中的酚;用有机溶剂分离石油馏分中的烯烃; 用CCl4萃取水中的Br2

固-液萃取,也叫浸取,用溶剂分离固体混合物中的组分,如用水浸取甜菜中的糖类;用酒精浸取黄豆中的豆油以提高油产量;用水从中药中浸取有效成分以制取流浸膏叫“渗沥”或“浸沥”。

虽然萃取经常被用在化学试验中,但它的操作过程并不造成被萃取物质化学成分的改变(或说化学反应),所以萃取操作是一个物理过程。

萃取是有机化学实验室中用来提纯和纯化化合物的手段之一。通过萃取,能从固体或液体混合物中提取出所需要的化合物。这里介绍常用的液-液萃取。利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来。

分配定律是萃取方法理论的主要依据,物质对不同的溶剂有着不同的溶解度。同时,在两种互不相溶的溶剂中,加入某种可溶性的物质时,它能分别溶解于两种溶剂中,实验证明,在一定温度下,该化合物与此两种溶剂不发生分解、电解、缔合和溶剂化等作用时,此化合物在两液层中之比是一个定值。不论所加物质的量是多少,都是如此。属于物理变化。用公式表示。

CA/CB=K

CACB分别表示一种化合物在两种互不相溶地溶剂中的量浓度。K是一个常数,称为“分配系数”。

有机化合物在有机溶剂中一般比在水中溶解度大。用有机溶剂提取溶解于水的化合物是萃取的典型实例。在萃取时,若在水溶液中加入一定量的电解质(如氯化钠),利用“盐析效应”以降低有机物和萃取溶剂在水溶液中的溶解度,常可提高萃取效果。

要把所需要的化合物从溶液中完全萃取出来,通常萃取一次是不够的,必须重复萃取数次。利用分配定律的关系,可以算出经过萃取后化合物的剩余量。

设:V为原溶液的体积

w0为萃取前化合物的总量

w1为萃取一次后化合物的剩余量

w2为萃取二次后化合物的剩余量

w3为萃取n次后化合物的剩余量

S为萃取溶液的体积

经一次萃取,原溶液中该化合物的浓度为w1/V;而萃取溶剂中该化合物的浓度为(w0-w1)/S;两者之比等于K,即:

w1/V =K w1=w0 KV

(w0-w1)/S KV+S

同理,经二次萃取后,则有

w2/V =K 即

(w1-w2)/S

w2=w1 KV =w0 KV

KV+S KV+S

因此,经n次提取后:

wn=w0 ( KV )

KV+S

当用一定量溶剂时,希望在水中的剩余量越少越好。而上式KV/(KV+S)总是小于1,所以n越大,wn就越小。也就是说把溶剂分成数次作多次萃取比用全部量的溶剂作一次萃取为好。但应该注意,上面的公式适用于几乎和水不相溶地溶剂,例如苯,四氯化碳等。而与水有少量互溶地溶剂乙醚等,上面公式只是近似的。但还是可以定性地指出预期的结果。

萃取可分为以下几种:一、双水相萃取

双水相萃取技术((Two-aqueous phase extraction,简称ATPS)是指亲水性聚合物水溶液在一定条件下可以形成双水相,由于被分离物在两相中分配不同,便可实现分离"被广泛用于生物化学细胞生物学和生物化工等领域的产品分离和提取"双水相萃取技术设备投资少,操作简单"该类双水相体系多为聚乙二醇-葡萄糖和聚乙二醇-无机盐两种"由于水溶性高聚物难以挥发,使反萃取必不可少,且盐进入反萃取剂中,对随后的分析测定带来很大的影响"另外水溶性高聚物大多黏度较大,不易定量操作,也给后续研究带来麻烦"事实上,普通的能与水互溶的有机溶剂在无机盐的存在下也可生成双水相体系,并已用于血清铜和血浆铬的形态分析"基于与水互溶的有机溶剂和盐水相的双水相萃取体系具有价廉!低毒!较易挥发而无需反萃取和避免使用黏稠水溶性高聚物等特点。二、有机溶剂萃取

水洗分液法是用水将有机相中溶于水的杂质分离出来,达到纯化有机相的目的。

有机溶剂萃取法就是常说的萃取,即用有机溶剂把水相、固相(或其它不溶于该溶剂的相)中溶于该溶剂的组分分离出来的方法。理论部分见Afeastforeye的内容。

一般萃取实验中,萃取后的有机相(含所需化合物)还要用水或饱和食盐水洗,进一步纯化有机相。 这两种方法都需要分液漏斗,操作过程基本相同,只需确定哪一层(相)需要保留。

三、超临界萃取

超临界萃取所用的萃取剂为超临界流体,超临界流体是介于气液之间的一种既非气态又非液态的物态,这种物质只能在其温度和压力超过临界点时才能存在。超临界流体的密度较大,与液体相仿,而它的粘度又较接近于气体。因此超临界流体是一种十分理想的萃取剂。

超临界流体的溶剂强度取决于萃取的温度和压力。利用这种特性,只需改变萃取剂流体的压力和温度,就可以把样品中的不同组分按在流体中溶解度的大小,先后萃取出来,在低压下弱极性的物质先萃取,随着压力的增加,极性较大和大分子量的物质与基本性质,所以在程序升压下进行超临界萃取不同萃取组分,同时还可以起到分离的作用。

温度的变化体现在影响萃取剂的密度与溶质的蒸汽压两个因素,在低温区(仍在临界温度以上),温度升高降低流体密度,而溶质蒸汽压增加不多,因此,萃取剂的溶解能力时的升温可以使溶质从流体萃取剂中析出,温度进一步升高到高温区时,虽然萃取剂的密度进一步降低,但溶质蒸汽压增加,挥发度提高,萃取率不但不会减少反而有增大的趋势。

除压力与温度外,在超临界流体中加入少量其他溶剂也可改变它对溶质的溶解能力。其作用机理至今尚未完全清楚。通常加入量不超过10%,且以极性溶剂甲醇、异丙醇等居多。加入少量的极性溶剂,可以使超临界萃取技术的适用范围进一步扩大到极性较大化合物。

超临界流体萃取过程简介

将萃取原料装入萃取釜。采用二氧化碳为超临界溶剂。二氧化碳气体经热交换器冷凝成液体,用加压泵把压力提升到工艺过程所需的压力(应高于二氧化碳的临界压力),同时调节温度,使其成为超临界二氧化碳流体。二氧化碳流体作为溶剂从萃取釜底部进入,与被萃取物料充分接触,选择性溶解出所需的化学成分。含溶解萃取物的高压二氧化碳流体经节流阀降压到低于二氧化碳临界压力以下进入分离釜(又称解析釜),由于二氧化碳溶解度急剧下降而析出溶质,自动分离成溶质和二氧化碳气体二部分,前者为过程产品,定期从分离釜底部放出,后者为循环二氧化碳气体,经过热交换器冷凝成二氧化碳液体再循环使用。整个分离过程是利用二氧化碳流体在超临界状态下对有机物有特异增加的溶解度,而低于临界状态下对有机物基本不溶解的特性,将二氧化碳流体不断在萃取釜和分离釜间循环,从而有效地将需要分离提取的组分从原料中分离出来。四、液膜萃取

是一项新的萃取技术。以水为连续相,分散以表面活性剂和有机相包覆有水相内核的液滴,形成一乳状液。在外水相中某些组分被液滴外的有机相萃取后进入液滴内的水相,实现萃取分离。由于液滴的直径只几微米,液膜的比表面大,加以被萃取组分很快从有机相转入内水相,传质推动力大、传质不受外水相与表机相平衡浓度的限制,故萃取效率很高。技术的难点是破乳。目前在高压静电场下破乳是最有效的。可用在金属离子分离、生物产品分离以及污水处理等方面。

五、固相萃取

固相萃取法是色谱法的一个重要的应用。在此方法中,使一定体积的样品溶液通过装有固体吸附剂的小柱,样品中与吸附剂有强作用的组分被完全吸附;然后,用强洗脱溶剂将被吸附的组分洗脱出来,定容成小体积被测样品溶液。使用固相萃取法,可以使样品中的组分得到浓缩,同时可初步除去对感兴趣组分有干扰的成分,从而提高了分析的灵敏度。固相萃取不仅可用于色谱分析中的样品预处理,而且可用于红外光谱、质谱、核磁共振、紫外和原子吸收等各种分析方法的样品预处理。C18固相萃取小柱具有疏水作用,对非极性的组分有吸附作用,因此可以从水中将多核芳烃萃取出来,完成浓缩样品的作用。固相萃取小柱还有其他类型,如极性、离子交换等。

六、液固萃取

利用填充了细颗粒吸附剂的小柱作液-固萃取(1iquid~solid extraction,LSE)的方法很快就把液一液萃取方法比了下去,在样品基质的简化和痕量样品的富集等方面建立起自己的

地位。液一液萃取有这样的一些问题:劳动力密集;经常受到乳化等实际问题的困扰;倾向

于消耗大量的高纯度溶剂,这些溶剂往往对操作者健康和环境造成危害;在排放的时候带来

额外的费用。液一固萃取则有廉价、省时、溶剂消耗和处理的步骤简单的优点。液一固萃取步骤可以很容易利用专用的流程单元组,自动地在多通道中同时萃取样品并把样品制备成适

自动进样的样品;或利用离心式分析器批量处理大批样品,达到增加样品的通量、减少劳动

力的费用的目的。液一固萃取用于现场采样很方便,它使人们不必把大量样品送到实验室中

去处理,最大程度地减少样品运输和储存的问题。液一固萃取技术不是没有它的问题,但这

些问题和在液一液萃取中遇到的问题是不一样的,这两种技术可以看作是互补的。

以上就是关于实验室常见的萃取方法 实验室常见的萃取方法有哪些全部的内容,包括:实验室常见的萃取方法 实验室常见的萃取方法有哪些、固相萃取的操作步骤、萃取的注意事项等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3662260.html

最新回复(0)