菱形具有平行四边形的一切性质:菱形的四条边都相等、菱形的对角线互相垂直平分且平分每一组对角、菱形是轴对称图形、菱形是中心对称图形。菱形的判定:同一平面内一组邻边相等的平行四边形是菱形、对角线互相垂直的平行四边形是菱形、四条边均相等的四边形是菱形、对角线互相垂直平分的四边形、两条对角线分别平分每组对角的四边形、有一对角线平分一个内角的平行四边形。
菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。计算机图形学约束中,菱形的一条对角线必须与x轴平行,另一条对角线与y轴平行。不满足此条件的几何学菱形在计算机图形学上被视作一般四边形。
性质:
1、菱形具有平行四边形的一切性质;
2、菱形的四条边都相等;
3、菱形的对角线互相垂直平分且平分每一组对角;
4、菱形是轴对称图形,对称轴有2条,即两条对角线所在直线;
5、菱形是中心对称图形;
判定:
前提条件:在同一平面内
1、一组邻边相等的平行四边形是菱形;
2、对角线互相垂直的平行四边形是菱形;
3、四条边均相等的四边形是菱形;
4、对角线互相垂直平分的四边形;
5、两条对角线分别平分每组对角的四边形;
6、有一对角线平分一个内角的平行四边形;
对角线互相垂直且平分;
四条边都相等;
对角相等,邻角互补;
每条对角线平分一组对角,
菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形
在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍
菱形具备平行四边形的一切性质有一个角是直角
四条边相等,对角线互相平分且垂直
如果有一个角是90度,或者对角线相等就能得到正方形
1、菱形,拼音[líng xíng]。
2、在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形是中心对称图形。
以上就是关于菱形的性质与判定是什么,菱形的判定定理全部的内容,包括:菱形的性质与判定是什么,菱形的判定定理、菱形有哪些性质,+什么得到正方形、菱形怎么读 菱形是什么意思等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!