超线程技术就是利用特殊字符的硬件指令,把两个逻辑内核模拟成物理芯片,让单个处理器能使用线程级并行计算,从而兼容多线程并行计算,从而兼容多线程操作系统和软件,使运行性能提高30%
虽然单线程芯片每秒钟能处理成千上万条指令,但是在任一时刻只能对一条指令进行操作。而“超线程”技术可以使芯片同时进行多线程处理,使芯片性能得到提升。如果单单是CPU支持超线程技术而没有芯片组、软件进行协同作战的话,超线程技术也就是一句空话而已。
那又有哪些芯片支持超线程技术呢?
Intel方面有850E、845GE、845PE、845GV、845G、845E、新款的Intel方面有850GE、845PE芯片组均可正常支持超线程技术的使用,而最早前的845E以及850E芯片组只需升级BIOS即可解决支持问题。
而SIS矽统方面决定升级其sis654DX、sis648芯片组为“B”版,这样就可以支持多线程技术了。
软件方面: 操作系统有 winXP;应用软件为office2000、officeXP等。另Linux kemel24x以后的版本也支持超线程技术。原来目前还只是一些办公软件支持超线程,这也未免让爱好GAME的小编失望呀!
程序是一组编译代码,可以执行相关的数据计算与操作,这些代码由一条条的指令组成,每一个代码组就是一条线程。在电脑中,无论做任何操作,都需要动用到线程,即使按一按键盘,电脑响应输入信号,也有相关的指令在运行。
现有主流电脑使用x86架构,每次只能执行一条线程,即单线程系统。单芯片计算环境中,在执行指令的时候,CPU先找出相应指令所在的内存位置,执行下一条指令,再转换到另一个位置,在同一时间内CPU只能对应一个指令。线程可以中断,并把中间结果暂存在另一个特殊位置(堆栈),不同的线程可以交叉运行,实现多任务,但每次运行的线程仍然仅有一条,千万不要把多任务和多线程混淆了。
超线程是一种特殊的多线程技术,它可以充分利用CPU的效率,发挥单个物理CPU的潜力。它不是代替多处理器,而是为了让多处理器的实力发挥得更加完美。
简而言之:超线程技术就是利用特殊的硬件指令,把两个逻辑内核模拟成两个物理芯片,让单个处理器都能使用线程级并行计算,从而兼容多线程操作系统和软件,提高处理器的性能。操作系统或者应用软件的多线程可以同时运行于一个HTT处理器上,两个逻辑处理器共享一组处理器执行单元,并行完成加、乘、负载等操作。这样就可以使得运行性能提高30%,这是因为在同一时间里,应用程序可以使用芯片的不同部分。虽然单线程芯片每秒钟能够处理成千上万条指令,但是在任一时刻只能够对一条指令进行操作。而“超线程”技术可以使芯片同时进行多线程处理,使芯片性能得到提升。
解释:超线程的意思就是模拟成双倍的CPU进行任务处理,可以理解为核心多了一倍, 不过这是有上限的,每个核心的实际最大处理量还是有自身决定。
简介:
将一个CPU模拟为两个并可以同时执行两条线程,后来因为双核的崛起而衰落,后来等到i7(四核八线程)的出世超线程才重新出现在人们面前。AMD在高端是比较失利的,但它的中高端价格上有优势。
600~700价位的主打多核心athlon620/630能把以高外频的e7xxx秒死。又比如现在主流的e5300与245,由于245集成内存控制器使它能支持到ddr3 1066但e53在ddr3下因为老旧的前端总线的特性只能识别到800的频率。
采用超线程及时可在同一时间里,应用程序可以使用芯片的不同部分。虽然单线程芯片每秒钟能够处理成千上万条指令,但是在任一时刻只能够对一条指令进行操作。而超线程技术可以使芯片同时进行多线程处理,使芯片性能得到提升。 虽然采用超线程技术能同时执行两个线程,但它并不象两个真正的CPU那样,每个CPU都具有独立的资源。当两个线程都同时需要某一个资源时,其中一个要暂时停止,并让出资源,直到这些资源闲置后才能继续。因此超线程的性能并不等于两颗CPU的性能。
双通道内存技术其实是一种内存控制和管理技术,它依赖于芯片组的内存控制器发生作用,在理论上能够使两条同等规格内存所提供的带宽增长一倍。它并不是什么新技术,早就被应用于服务器和工作站系统中了,只是为了解决台式机日益窘迫的内存带宽瓶颈问题它才走到了台式机主板技术的前台。在几年前,英特尔公司曾经推出了支持双通道内存传输技术的i820芯片组,它与RDRAM内存构成了一对黄金搭档,所发挥出来的卓绝性能使其一时成为市场的最大亮点,但生产成本过高的缺陷却造成了叫好不叫座的情况,最后被市场所淘汰。由于英特尔已经放弃了对RDRAM的支持,所以目前主流芯片组的双通道内存技术均是指双通道DDR内存技术,主流双通道内存平台英特尔方面是英特尔 865、875系列,而AMD方面则是NVIDIA Nforce2系列。
双通道内存技术是解决CPU总线带宽与内存带宽的矛盾的低价、高性能的方案。现在CPU的FSB(前端总线频率)越来越高,英特尔 Pentium 4比AMD Athlon XP对内存带宽具有高得多的需求。英特尔 Pentium 4处理器与北桥芯片的数据传输采用QDR(Quad Data Rate,四次数据传输)技术,其FSB是外频的4倍。英特尔 Pentium 4的FSB分别是400、533、800MHz,总线带宽分别是32GB/sec,42GB/sec和64GB/sec,而DDR 266/DDR 333/DDR 400所能提供的内存带宽分别是21GB/sec,27GB/sec和32GB/sec。在单通道内存模式下,DDR内存无法提供CPU所需要的数据带宽从而成为系统的性能瓶颈。而在双通道内存模式下,双通道DDR 266、DDR 333、DDR 400所能提供的内存带宽分别是42GB/sec,54GB/sec和64GB/sec,在这里可以看到,双通道DDR 400内存刚好可以满足800MHz FSB Pentium 4处理器的带宽需求。而对AMD Athlon XP平台而言,其处理器与北桥芯片的数据传输技术采用DDR(Double Data Rate,双倍数据传输)技术,FSB是外频的2倍,其对内存带宽的需求远远低于英特尔 Pentium 4平台,其FSB分别为266、333、400MHz,总线带宽分别是21GB/sec,27GB/sec和32GB/sec,使用单通道的DDR 266、DDR 333、DDR 400就能满足其带宽需求,所以在AMD K7平台上使用双通道DDR内存技术,可说是收效不多,性能提高并不如英特尔平台那样明显,对性能影响最明显的还是采用集成显示芯片的整合型主板。
CPU生产商为了提高CPU的性能,通常做法是提高CPU的时钟频率和增加缓存容量。不过目前CPU的频率越来越快,如果再通过提升CPU频率和增加缓存的方法来提高性能,往往会受到制造工艺上的限制以及成本过高的制约。
尽管提高CPU的时钟频率和增加缓存容量后的确可以改善性能,但这样的CPU性能提高在技术上存在较大的难度。实际上在应用中基于很多原因,CPU的执行单元都没有被充分使用。如果CPU不能正常读取数据(总线/内存的瓶颈),其执行单元利用率会明显下降。另外就是目前大多数执行线程缺乏ILP(Instruction-Level Parallelism,多种指令同时执行)支持。这些都造成了目前CPU的性能没有得到全部的发挥。因此,Intel则采用另一个思路去提高CPU的性能,让CPU可以同时执行多重线程,就能够让CPU发挥更大效率,即所谓“超线程(Hyper-Threading,简称“HT”)”技术。超线程技术就是利用特殊的硬件指令,把两个逻辑内核模拟成两个物理芯片,让单个处理器都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高的CPU的运行效率。
采用超线程及时可在同一时间里,应用程序可以使用芯片的不同部分。虽然单线程芯片每秒钟能够处理成千上万条指令,但是在任一时刻只能够对一条指令进行操作。而超线程技术可以使芯片同时进行多线程处理,使芯片性能得到提升。
超线程技术是在一颗CPU同时执行多个程序而共同分享一颗CPU内的资源,理论上要像两颗CPU一样在同一时间执行两个线程,P4处理器需要多加入一个Logical CPU Pointer(逻辑处理单元)。因此新一代的P4 HT的die的面积比以往的P4增大了5%。而其余部分如ALU(整数运算单元)、FPU(浮点运算单元)、L2 Cache(二级缓存)则保持不变,这些部分是被分享的。
虽然采用超线程技术能同时执行两个线程,但它并不象两个真正的CPU那样,每个CPU都具有独立的资源。当两个线程都同时需要某一个资源时,其中一个要暂时停止,并让出资源,直到这些资源闲置后才能继续。因此超线程的性能并不等于两颗CPU的性能。
英特尔P4 超线程有两个运行模式,Single Task Mode(单任务模式)及Multi Task Mode(多任务模式),当程序不支持Multi-Processing(多处理器作业)时,系统会停止其中一个逻辑CPU的运行,把资源集中于单个逻辑CPU中,让单线程程序不会因其中一个逻辑CPU闲置而减低性能,但由于被停止运行的逻辑CPU还是会等待工作,占用一定的资源,因此Hyper-Threading CPU运行Single Task Mode程序模式时,有可能达不到不带超线程功能的CPU性能,但性能差距不会太大。也就是说,当运行单线程运用软件时,超线程技术甚至会降低系统性能,尤其在多线程操作系统运行单线程软件时容易出现此问题。
需要注意的是,含有超线程技术的CPU需要芯片组、软件支持,才能比较理想的发挥该项技术的优势。操作系统如:Microsoft Windows XP、Microsoft Windows 2003,Linux kernel 24x以后的版本也支持超线程技术。目前支持超线程技术的芯片组包括如:
Intel芯片组:
845、845D和845GL是不支持支持超线程技术的;845E芯片组自身是支持超线程技术的,但许多主板都需要升级BIOS才能支持;在845E之后推出的所有芯片组都支持支持超线程技术,例如845PE/GE/GV以及所有的865/875系列以及915/925系列芯片组都支持超线程技术。
VIA芯片组:
P4X266、P4X266A、P4M266、P4X266E和P4X333是不支持支持超线程技术的,在P4X400之后推出的所有芯片组都支持支持超线程技术,例如P4X400、P4X533、PT800、PT880、PM800和PM880都支持超线程技术。
SIS芯片组:
SIS645、SIS645DX、SIS650、SIS651和早期SIS648是不支持支持超线程技术的;后期的SIS648、SIS655、SIS648FX、SIS661FX、SIS655FX、SIS655TX、SIS649和SIS656则都支持超线程技术。
ULI芯片组:
M1683和M1685都支持超线程技术。
ATI芯片组:
ATI在Intel平台所推出的所有芯片组都支持超线程技术,包括Radeon 9100 IGP、Radeon 9100 Pro IGP和RX330。
nVidia芯片组:
即将推出的nForce5系列芯片组都支持超线程技术。
超线程技术就是利用特殊的硬件指令,把两个逻辑内核模拟成两个物理芯片,让单个处理器都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高的CPU的运行效率。因此支持Intel超线程技术的cpu,打开超线程设置,允许超线程运行后,在操作系统中看到的cpu数量是实际物理cpu数量的两倍,就是1个cpu可以看到两个,两个可以看到四个。
有超线程技术的CPU需要芯片组、软件支持,才能比较理想的发挥该项技术的优势。
什么是双核处理器呢双核处理器背后的概念蕴涵着什么意义呢简而言之,双核处理器即是基于单个半导体的一个处理器上拥有两个一样功能的处理器核心。换句话说,将两个物理处理器核心整合入一个核中。企业IT管理者们也一直坚持寻求增进性能而不用提高实际硬件覆盖区的方法。多核处理器解决方案针对这些需求,提供更强的性能而不需要增大能量或实际空间。
双核心处理器技术的引入是提高处理器性能的有效方法。因为处理器实际性能是处理器在每个时钟周期内所能处理器指令数的总量,因此增加一个内核,处理器每个时钟周期内可执行的单元数将增加一倍。在这里我们必须强调一点的是,如果你想让系统达到最大性能,你必须充分利用两个内核中的所有可执行单元:即让所有执行单元都有活可干!
为什么IBM、HP等厂商的双核产品无法实现普及呢,因为它们相当昂贵的,从来没得到广泛应用。比如拥有128MB L3缓存的双核心IBM Power4处理器的尺寸为115x115mm,生产成本相当高。因此,我们不能将IBM Power4和HP PA8800之类双核心处理器称为AMD即将发布的双核心处理器的前辈。
目前,x86双核处理器的应用环境已经颇为成熟,大多数操作系统已经支持并行处理,目前大多数新或即将发布的应用软件都对并行技术提供了支持,因此双核处理器一旦上市,系统性能的提升将能得到迅速的提升。因此,目前整个软件市场其实已经为多核心处理器架构提供了充分的准备。
32位、64位指的是处理器中的计算机制,指数据的长度、指令寻址的长度。64位指按64个2进制数去寻址。32位计算在理论上可支持4G内存,而实际上只能支持2G。随着互联网、企业信息化的发展,服务器应用的复杂程度越来越高,对内存需求扩张得非常快,现在一个标准服务器配1G、2G的内存很普遍,32位服务器走到今天已经到了技术尽头,不得不升级到64位。
超线程技术通俗的将就是一心二用。
睿频技术通俗的讲超负荷工作。
详细介绍:
1、超线程技术就是利用特殊的硬件指令,把两个逻辑内核模拟成两个物理芯片,让单个处理器都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高的CPU的运行效率。
2、英特尔睿频加速技术是英特尔酷睿i7处理器和英特尔酷睿i5处理器的独有特性。该技术可以智能地加快处理器速度,从而为高负载任务提供最佳性能——即最大限度地有效提升性能以匹配工作负载。
分类: 电脑/网络 >> 硬件
解析:
谈到超线程技术,我们先得了解什么是线程,什么是多线程。对于计算机微处理器而言,程序只是一组编译过的机器代码,可以执行相关的数据计算与操作,这些代码由一条条的指令组成,每一个代码组就是一条线程。
现有主流CPU为x86架构,每次只能执行一条线程,即单线程。单CPU系统中,在执行指令的时候,CPU先找出相应指令所在的内存位置,执行下一条指令,再转换到另一个位置,在同一时间内CPU只能对应一个指令。线程可以中断,并把中间结果暂存在另一个特殊位置(堆栈),不同的线程可以交叉运行,实现多任务,但每次运行的线程仍然仅有一条,千万不要把多任务和多线程混淆了。
既然一个CPU是单线程,那么两个CPU自然就可以双线程啦,如此类推,就会出现四路、八路系统。但双处理器系统的性能并不能达到单处理器的两倍,通常只有33%的性能增益。
为了提高CPU的性能,厂商通常采用增加工作频率和缓存容量的方法来提升速度,但这是治标不治本的方法,CPU只提高了速度,其内在潜力依然未能完全发挥,CPU的执行单元没有被充分利用,于是设计者就在CPU中加入两个逻辑处理单元,同时管理CPU的全部资源,直接提高CPU内核的工作效率。
超线程技术就是利用特殊的硬件指令,把两个逻辑内核模拟成两个物理芯片,让单个处理器都能使用线程级并行计算,从而兼容多线程操作系统和软件,提高处理器的性能。操作系统或者应用软件的多线程可以同时运行于一个HTT处理器上,两个逻辑处理器共享一组处理器执行单元,并行完成加、乘、负载等操作。
如何提升工作效率
那么,超线程技术是如何提高CPU性能的呢?
我们知道,CPU由很多执行单元组成(如整数运算单元、浮点运算单元和存储单元),这些执行单元无法同时工作,大多数时间有一半执行单元是处于空闲状态。例如,MS Office等商业软件主要使用整数运算单元和读写/存储单元,几乎不涉及浮点运算单元,3D渲染软件主要使用浮点运算单元,很少涉及整数运算单元,很明显,这种设计造成了很大的浪费。如P4处理器内部有7个执行单元,每个时钟周期内,约有2个执行单元工作,它们共执行两次操作,那么,其他5个单元完全没有用到。
为了解决这个问题,高端电脑采用了ILP(Instruction Level Paralleli ,指令级平行运算)技术,可以同时执行多条指令,提高单CPU的效率。而x86架构只能让多个CPU来执行不同的线程,不过硬件成本增加了不少,于是超线程技术处理器的出现正式兼容两者的优势。
传统处理器和支持超线程处理器在指令执行上的对比,参见^a^1、^b^2、^c^3。
从上面的对比图可以看出:采用了超线程技术后,处理器真正并行执行多个线程,从而在同一频率和缓存的基础上实现了提高系统性能的技术变革。
超线程技术对商用和家用电脑而言,除了全面提升系统性能以外,还增加系统平台所能支持用户的数量,大幅降低系统的反应潜伏时间(因为任务能被分为几个隔离的线程来同时执行),增加系统的指令执行数量,还有一点很关键的是,即使对于现有的IA-32体系软件它也能很好地兼容。因为,HTT处理器还提供一个中断指令,在执行适合单处理器的任务时,暂停其中一个逻辑内核,让操作系统识别为单处理器,在执行适合多处理器的任务时,重新打开逻辑内核,利用HTT来增加整体效率。
软硬件支持与应用
支持超线程技术需软硬件的支持,硬件方面需要主板北桥芯片的支持。目前支持超线程技术的北桥有850E、845E、845G(B版本)、845GV、845GE、845PE,以及未来英特尔能支持到533MHz FSB的北桥都将支持超线程技术。支持400MHz FSB的北桥是不支持超线程技术的,支持超线程技术的处理器配合这样的北桥使用时,只能作为传统的处理器使用。
超线程技术还需要主板对CPU的电源支持,需要主板能提供给处理器高达70A的电流,否则系统可能不能长期稳定工作。除此之处还需要主板BIOS的支持,需要BIOS加入特定的支持HTT处理器的代码。当BIOS检测到是超线程处理器时,在BIOS设置菜单中出现CPU Hyper-Threading(Enabled or Disabled)的选项。
超线程技术还需要操作系统的支持。目前支持超线程技术的有Windows XP和Linux 24X。这不同于传统的处理器安装的Windows XP,使用超线程技术的处理器安装完Windows XP后在设备管理器中能显示有两个处理器和ACPI Multiprocessor PC。
当然你的处理器必须支持超线程技术。从即将于下个月发布的306GHz P4开始,英特尔的处理器都将支持超线程技术。
这里笔者以QDI的P2E 333和P8 333这两款主板为例,它们的北桥芯片分别是英特尔845PE和845GE,支持533MHz FSB和DDR333,支持处理器超线程技术;主板的CPU供电电源模块符合英特尔Northwood FMB2标准,能提供70A的电流;在测试中使用超线程处理器306GHz P4 CPU(实验样品)开机后,进入BIOS中出现CPU Hyper-Threading的选项。
安装Windows XP后,设备管理器出现两个处理器和ACPI Multiprocessor PC,在任务管理器中出现两个CPU实时使用率的图标,如^d^4:
笔者对开启和关闭CPU Hyper-Threading功能的测试中,发现启用超线程技术能使系统性能提高近20%左右。
以上就是关于什么是超线程技术CPU支持这种技术和不支持这种技术有何区别全部的内容,包括:什么是超线程技术CPU支持这种技术和不支持这种技术有何区别、cpu的超线程技术是什么意思、电脑双通道和超线程是什么意思等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!