圆周率×半径×2。
圆形的周长=圆周率×半径×2,如一个半径为2cm的圆,它的周长就是314×2×2=1256cm。
在古代,这个问题几乎是依赖于对实验的归纳。人们在经验中发现圆的周长与直径有着一个常数的比,并把这个常数叫做圆周率。
于是自然地,圆周长就是:圆周率×半径×2或者圆周率×直径。
关于圆的其他公式:
圆面积=圆周率×半径×半径。
半圆的面积:S半圆=(πr2)÷2。
半圆的面积=圆周率×半径×半径÷2。
圆环面积: S大圆-S小圆=π(R2-r2)(R为大圆半径,r为小圆半径)。
圆环面积=外大圆面积-内小圆面积。
圆的周长=圆周率直径 即:
c=πd
圆的周长=圆周率2半径 即:
c=2πr
圆的面积=圆周率半径的平方 即:
s=πr²
注S:面积 C:周长 d=直径 r=半径
1、我们设一个圆的圆心为o,它的半径为r,直径为d,如图所示:
2、在计算圆的周长时我们可以使用直径来进行计算,使用直径计算其公式为C=πd,如图所示:
3、我们也可以使用半径来计算圆的周长,使用半径计算圆的周长公式是:C=2πr,如图所示:
4、同样的在计算圆的面积时我们也可以使用半径计算圆的面积,计算公式为S=π×r×r,如图所示:
5、我们使用直径计算圆的面积时其计算公式为:S=π(d/2)×(d/2),如图所示:
是。就是平面内有一条直线 L ,在这个平面内任给一个点,就能得到这个点到直线 L 的距离。这个距离就是过这点作这条直线的垂线,点与垂足的距离即为点到直线的距离。
在同一平面内到定点的距离等于定长的点的集合叫做圆(circle)。这个定点叫做圆的圆心。
圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆。
圆是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0。
与圆相关的公式:
1、半圆的面积:S半圆=(πr^2)/2。(r为半径)。
2、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。
3、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。
4、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。
5、扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)。
6、扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)。
7、圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)。
于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。
1、以使用直径找到圆的周长
公式很简单:C =πd。在该方程式中,“ C”代表圆的周长,“ d”代表圆的直径。也就是说,您只需将直径乘以pi就可以找到圆的周长。
2、以使用半径找到圆的周长半径是直径的一半,因此直径可以认为是2r。牢记这一点,您可以写下公式,以找到给定半径:C =2πr的圆的周长。在该公式中,“ r”表示圆的半径。
扩展资料圆的基本性质1平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
2圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
3顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
6两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。7在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
1圆的周长C=2πr=πd
2圆的面积S=πr²
3扇形弧长l=nπr/180
4扇形面积S=nπr²/360=rl/2
5圆锥侧面积S=πrl
〖圆的定义〗
几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
〖圆的相关量〗
圆周率:圆周长度与圆的直径长度的比叫做圆周率,
值是3 圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
〖圆和圆的相关量字母表示方法〗
圆—⊙ 半径—r 弧—⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S
〖圆和其他图形的位置关系〗
圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
直线与圆有3种位置关系:
无公共点为相离;
有两个公共点为相交;
圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):
AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。
两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。
圆的平面几何性质和定理
[编辑本段]一有关圆的基本性质与定理
⑴圆的确定:不在同一直线上的三个点确定一个圆。 圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
⑶有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③S三角=1/2△三角形周长内切圆半径
④两相切圆的连心线过切点(连心线:两个圆心相连的线段)
〖有关切线的性质和定理〗
圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:
(1)经过切点垂直于这条半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。
〖有关圆的计算公式〗
1圆的周长C=2πr=πd
2圆的面积S=πr^2;
3扇形弧长l=nπr/180
4扇形面积S=nπr^2;/360=rl/2
5圆锥侧面积S=πrl
圆的解析几何性质和定理
[编辑本段]〖圆的解析几何方程〗
圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。
希望帮到你 望采纳 谢谢 加油!!
圆的周长公式:圆的周长C= π X 直径 = π X 半径 X 2 (π=314)
当圆的直径为50时S=314X50=157
通常用圆规来画圆。同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。
圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆有无数条对称轴。圆是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0。
扩展资料:
扇形弧长L=圆心角(弧度制)×R=nπR/180(θ为圆心角)(R为扇形半径)
扇形面积S=nπR²/360=LR/2(L为扇形的弧长)
圆锥底面半径r=nR/360(r为底面半径)(n为圆心角)
直线和圆位置关系:
1、直线和圆无公共点,称相离。AB与圆O相离,d>r。
2、直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d<r。
3、直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。圆心与切点的连线垂直于切线。AB与⊙O相切,d=r。(d为圆心到直线的距离)
参考资料来源:百度百科——圆
以上就是关于圆形的周长是什么全部的内容,包括:圆形的周长是什么、圆的周长怎么计算、什么叫圆的周长等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!