溴化理空调的工作原理

溴化理空调的工作原理,第1张

溴化锂吸收式制冷原理和蒸汽压缩制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、汽化吸收载冷剂的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是在利用“溴化锂-水”组成的二元溶液为工质对,完成制冷循环的。

在溴化锂吸收式制冷机内循环的二元工质中,水是制冷剂区别于氟利昂~。水在真空状态下蒸发,具有较低的蒸发温度(6℃),从而吸收载冷剂热负荷,使之温度降低。溴化锂水溶液是吸收剂,在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。吸收与释放周而复始制冷循环不断。制冷过程中的热能为蒸汽,也可叫动力。

溴化锂属于制冷剂

目前溴化锂机组,使用的制冷剂就是 溴化锂水溶液

他是双工质制冷剂,使用蒸发式制冷

也就是说,溴化锂机组是使用热来制冷的,通过获得的热量(比如太阳能集热器)将溴化锂水溶液蒸发,蒸汽被高浓度溴化锂吸收过程中带走大量的热,并且冷却

也就是说,溴化锂机组需要1个热媒(热源),一个冷却水(冷却塔),一个冷冻水(就是获得的冷水)回路

这样一来,溴化锂机组如果不考虑热量来源的价格,那么他消耗的电能,仅仅是水泵的电能,他不需要压缩机

具体请参考 溴化锂机组 ,比如远大溴化锂机组,美国开利溴化锂中央空调机组等。

另外,[回答者:hjd123abc]请在不了解事实的情况下谦虚,不知道就说不知道。

压缩机制冷仅仅是对于单工质制冷剂而言的,比如以前的用压缩气体氨使其液化制冷,或者目前的压缩制冷剂(包括R134 R404等等)实现制冷

因为这种是通过压缩使制冷剂形态发生变化,由气态变为液态释放热量,从液态变为气态吸收热量,通过这种过程制冷的,但由于需要压缩,所以压缩机需要消耗及其多的电能

但溴化锂机组通常无法做得很小,一般都是中央空调,而且溴化锂机组需要热源,很麻烦,但是如果是大型的地方,比如有地热能源,太阳能等,还是很经济的,溴化锂机组所需要的电能仅仅是水泵的电能,这个电能几乎可以忽略,不到压缩机式制冷机组的四十份之一。

总之,溴化锂制冷[包括制热,反过来装就是制热了]机组,他使用的制冷剂为溴化锂水溶液,但他没有压缩机,他是蒸发式制冷。

下面给你复制一段溴化锂机组的原理

==================================

所谓太阳能制冷,就是利用太阳集热器为吸收式制冷机提供其发生器所需要的热媒水。热媒水的温度越高,则制冷机的性能系数(亦称COP)越高,这样空调系统的制冷效率也越高。例如,若热媒水温度60℃左右,则制冷机COP约0~40;若热媒水温度90℃左右,则制冷机COP约0~70;若热媒水温度120℃左右,则制冷机COP可达110以上。

实践证明,采用热管式真空管集热器与溴化锂吸收式制冷机相结合的太阳能空调技术方案是成功的,它为太阳能热利用技术开辟了一个新的应用领域。

一:基本工作原理

太阳能吸收式空调系统主要由太阳集热器和吸收式制冷机两部分构成。

1吸收式制冷工作原理

吸收式制冷是利用两种物质所组成的二元溶液作为工质来进行的。这两种物质在同一压强下有不同的沸点,其中高沸点的组分称为吸收剂,低沸点的组分称为制冷剂。常用的吸收剂—制冷剂组合有两种:一种是溴化锂—水,通常适用于大型中央空调;另一种是水—氨,通常适用于小型空调。

吸收式制冷机主要由发生器、冷凝器、蒸发器和吸收器组成。

本文以溴化锂吸收式制冷机为例。在制冷机运行过程中,当溴化锂水溶液在发生器内受到热媒水加热后,溶液中的水不断汽化;水蒸气进入冷凝器,被冷却水降温后凝结;随着水的不断汽化,发生器内的溶液浓度不断升高,进入吸收器;当冷凝器内的水通过节流阀进入蒸发器时,急速膨胀而汽化,并在汽化过程中大量吸收蒸发器内冷媒水的热量,从而达到降温制冷的目的;在此过程中,低温水蒸气进入吸收器,被吸收器内的浓溴化锂溶液吸收,溶液浓度逐步降低,由溶液泵送回发生器,完成整个循环。

2太阳能吸收式空调工作原理

所谓太阳能吸收式制冷,就是利用太阳集热器为吸收式制冷机提供其发生器所需要的热媒水。热媒水的温度越高,则制冷机的性能系数(亦称COP)越高,这样空调系统的制冷效率也越高。例如,若热媒水温度60℃左右,则制冷机COP约0�40;若热媒水温度90℃左右,则制冷机COP约0�70;若热媒水温度120℃左右,则制冷机COP可达1�10以上。

常规的吸收式空调系统主要包括吸收式制冷机、空调箱(或风机盘管)、锅炉等几部分,而太阳能吸收式空调系统是在此基础上再增加太阳集热器、储水箱和自动控制系统。

在夏季,被集热器加热的热水首先进入储水箱,当热水温度达到一定值时,由储水箱向制冷机提供热媒水;从制冷机流出并已降温的热水流回储水箱,再由集热器加热成高温热水;制冷机产生的冷媒水通向空调箱,以达到制冷空调的目的。当太阳能不足以提供高温热媒水时,可由辅助锅炉补充热量。

在冬季,同样先将集热器加热的热水进入储水箱,当热水温度达到一定值时,由储水箱直接向空调箱提供热水,以达到供热采暖的目的。当太阳能不能够满足要求时,也可由辅助锅炉补充热量。

在非空调采暖季节,只要将集热器加热的热水直接通向生活用储水箱中的热交换器,就可将储水箱中的冷水逐渐加热以供使用。

二:空调及供热综合示范系统

为了将太阳能吸收式空调技术付诸实际应用,根据“九五”国家科技攻关计划任务,北京市太阳能研究所于1999年9月建成一套我国目前最大的太阳能吸收式空调及供热综合示范系统(见压题照片)。

1安装地点概况

太阳能空调示范系统建在山东省乳山市。乳山市位于山东半岛的东南端,北接烟台,西临青岛,南濒黄海。该地区有较好的太阳能资源,年平均日太阳辐照量为17�3MJ/m2。当地夏季最高气温33�1℃,冬季最低气温-7�8℃,夏季和冬季分别有制冷和采暖的要求,因此是安装太阳能空调系统的合适地点。

乳山市银滩旅游度假区利用本地区自然条件,大力发展旅游事业,正在筹建“中国新能源科普公园”。科普公园计划建造包括风能馆、太阳能馆等在内的8个馆、厅。太阳能空调系统就建在科普公园内的太阳能馆。

在这里人们不仅可以参观太阳能科普展品,增长太阳能科普知识,了解最新的太阳能技术,并且在参观和娱乐的同时可亲身感受到太阳能空调和采暖所营造的舒适环境。

2主要技术性能

新建的太阳能空调系统由热管式真空管集热器、溴化锂吸收式制冷机、储热水箱、储冷水箱、生活用储热水箱、循环泵、冷却塔、空调箱、辅助燃油锅炉和自动控制系统等部分组成。系统安装完成后,经过冬、春、夏三季运行和测试,达到表1的主要技术性能。

3系统设计特点

(1)太阳能与建筑有机结合

整个太阳能馆的总体设计既使建筑物造型美观、新颖别致,又能满足集热器安装的要求。依据这个原则,建筑物的南立面采用大斜屋顶结构,一则斜面的面积比平面大得多,可以布置更多的集热器;二则在斜面上布置集热器时无需考虑前后遮挡问题,而且造型也非常美观。斜屋顶倾角取35°,与当地纬度接近,有利于集热器充分发挥作用。

(2)热管式真空管集热器提高了制冷和采暖效率

热管式真空管集热器是北京市太阳能研究所的一项重大科技成果,具有效率高、耐冰冻、启动快、保温好、承压高、耐热冲击、运行可等诸多优点,是组成高性能太阳能空调系统的重要部件。热管式真空管集热器可为高效溴化锂制冷机提供88℃的热媒水,从而提高整个系统的制冷效率;这种集热器还可在北方寒冷的冬季有效地工作,为建筑物供暖。

(3)大小两个储热水箱加快了每天制冷或采暖进程

根据一天内太阳辐照度变化的固有特点,储热水箱不仅可以使系统稳定运行,还可以把太阳辐照高峰时的多余能量以热水形式储存起来。本系统与一般太阳能空调系统的不同之处在于设置了大、小两个储热水箱。小储热水箱主要用于保证系统的快速启动。测试结果表明,在夏季和冬季晴天的早晨,小储热水箱内水温就能分别达到88℃和60℃,从而满足制冷和供暖的要求。

(4)专设的储冷水箱降低了系统的热量损失

尽管储热水箱可以储存能量,但它的能力毕竟是有限的。本系统专门设计了一个储冷水箱。在白天太阳辐照充裕的情况下,可以将制冷机产生的冷媒水储存在储冷水箱内,其优点在于这种情况下的系统热量损失显然要比以热媒水形式储存在储热水箱中低得多,因为夏季环境温度与冷媒水温度之间的温差要明显小于热媒水温度与环境温度之间的温差。

(5)配套的辅助锅炉使系统可以全天候运行

所有太阳能系统的运行都不可避免地要受到气候条件的影响。为使系统可以全天候发挥空调、采暖功能,辅助的常规能源是必不可少的。该太阳能空调系统选用了辅助燃油热水锅炉,在白天太阳辐照量不足以及夜间需要继续用冷或用热时,可随即启动辅助锅炉,确保系统持续稳定地运行。

(6)系统运行及工况之间切换均能自动控制

在利用太阳能部分地替代常规能源的系统中,系统启动、能量储存以及太阳能与常规能源之间切换等功能的自动化都显得尤为重要;另外,本系统设置了几个储水箱,如何在不同的工况下自动启用不同的水箱,走不同的管路,也是系统正常运行的关键;再则,太阳能系统还应可地解决自动防过热和防冻结的问题。因此,我们为该太阳能空调系统设计了一套安全可、功能齐全的自动控制系统。

三:推广应用前景

实践证明,采用热管式真空管集热器与溴化锂吸收式制冷机相结合的太阳能空调技术方案是成功的,它为太阳能热利用技术开辟了一个新的应用领域。

太阳能吸收式空调与常规空调相比,具有以下三大明显的优点:

(1)太阳能空调的季节适应性好,也就是说,系统制冷能力随着太阳辐射能的增加而增大,而这正好与夏季人们对空调的迫切要求一致;

(2)传统的压缩式制冷机以氟里昂为介质,它对大气层有极大的破坏作用,而吸收式制冷机以无毒、无害的溴化锂为介质,它对保护环境十分有利;

(3)同一套太阳能吸收式空调系统可以将夏季制冷、冬季采暖和其它季节提供热水结合起来,显著地提高了太阳能系统的利用率和经济性。

诚然,凡事都要一分为二。我们在强调太阳能空调优点的同时,也应看到它目前存在的局限性,因而在推广应用过程中注意解决这些问题:

(1)虽然太阳能空调开始进入实用化阶段,希望使用太阳能空调的用户不断增加,但目前已经实现商品化的产品大都是大型的溴化锂制冷机,只适用于单位的中央空调。对此,空调制冷界正在积极研究开发各种小型的溴化锂或氨—水吸收式制冷机,以便与太阳集热器配套逐步进入家庭;

(2)虽然太阳能空调可以无偿利用太阳能资源,但由于自然条件下的太阳辐照度不高,使集热器采光面积与空调建筑面积的配比受到限制,目前只适用于层数不多的建筑。对此,我们正在加紧研制可产生水蒸气的真空管集热器,以便与蒸气型吸收式制冷机结合,进一步提高集热器与空调建筑面积的配比;

(3)虽然太阳能空调可以大大减少常规能源的消耗,大幅度降低运行费用,但目前系统的初投资仍然偏高,只适用于有限的富裕用户。为此,我们正在坚持不懈地降低现有真空管集热器的成本,使越来越多的单位和家庭具有使用太阳能空调的经济承受能力。

近年来,地球表面温度逐年上升,人们对夏季空调的要求越来越强烈,安装空调已成为我国大部分地区的一股消费浪潮。我们相信,太阳能吸收式空调系统可以发挥夏季制冷、冬季采暖、全年提供热水的综合优势,必将取得显著的经济、社会和环境效益,具有广阔的推广应用前景。

从理论上讲,太阳能空调的实现有两种方式,一是先实现光-电转换,再用电力驱动常规压缩式制冷机进行制冷;二是利用太阳的热能驱动进行制冷。对于前者,由于大功率太阳能发电技术的昂贵价格,目前实用性较差。因此,太阳能空调技术一般指热能驱动的空调技术。当然,广义上的太阳能空调技术也包括地热驱动和地下冷源空调技术。

由于技术、成本等原因,太阳能空调一般采用吸收式和吸附式制冷技术。吸收式制冷技术是利用吸收剂的吸收和蒸发特性进行制冷的技术,根据吸收剂的不同,分为氨-水吸收式制冷和溴化锂-水吸收式制冷两种。吸附式制冷技术是利用固体吸附剂对制冷剂的吸附作用来制冷,常用的有分子筛-水、活性炭-甲醇吸附式制冷。两种制冷技术均不采用氟利昂,可以避免对臭氧层的破坏作用,具有特别的意义;并且二者采用较低等级的能源,在节能和环保方面有着光明的前景。另外,吸附式制冷系统运行费用低(或无运行费用),无运动部件,寿命长,无噪声,尤其在航空、航天等特殊领域广泛应用。

对于太阳能制冷技术,因为要照顾到集热器的效率等,就不得不采用比较低的热源温度。所以,太阳能驱动的制冷机存在效率较低的问题。随之而来的,从集热器、制冷机等相应的成本分配来看,集热温度、冷水温度及冷却水温度应各为多少,才能建立一个最为经济合理的太阳能空调系统,也是尚待解决的课题。另外,由于太阳能的收集存在着时效问题,蓄热技术也必须得到很好地解决,一个较好的蓄热系统可以弥补太阳能的不可性和间断性。

太阳能空调技术的优势

当前,大部分使用的空调技术是一种以电能为动力,把室内热量加以吸收排除到室外的循环系统。这种空调将室内的热量收集后,释放到大气中,进一步提高了大气的高温,空洞装的愈多,城市的大气温度会愈高,则热岛效应会愈强烈。另外,制冷循环介质氟里昂等氟化物的广泛使用,导致了大气臭氧层的破坏,恶化了生态环境也是众所周知的。近几年来,取代氟里昂的工作介质的新型空调(是否污染环境,有待长期检验)已经投放市场。但耗能严重的问题依然存在,在世界能源日益紧张的今天,采用更为节能的空调系统是人类的共同需要。

利用太阳能作为能源的空调系统,它的诱人之处在于越是太阳能辐射强烈的时候,环境气温越高,人们的生活越需要空调,此时,太阳能空调的制冷能力就越强。这是人和自然和谐的理想境界。使用太阳能空调的结果,既创造了室内宜人的温度,又能降低大气的环境温度,还减弱了城市中的热岛效应。更为可取的是,既节约了能源,还不使用破坏大气层的氟里昂等有害物质,是名副其实的绿色空调。

太阳能空调技术的应用前景

就我国的空调行业而言,空调器的市场正处于发展和完善阶段,目前,大中城市家庭的空调器普及仅在20%以下,市场潜力十分巨大。随着人们生活水平的大幅提高,空调器已逐渐成为家庭必备的家用电器,现在,阻碍空调进入家庭的主要矛盾是耗能和价格因素。另外,目前大量生产的大型商用中央空调和家用壁挂、立式空调不太适合一些高档的住宅,急需要一种小型户式中央空调来填充这一空白。而从太阳能空调的特性和技术特点来看,太阳能空调最适合于上述矛盾的解决和应用,故当前空调行业的需求给太阳能空调技术的发展和应用带来了难得的机遇。

经过几十年的发展,太阳能空调技术已经开始迈入实用化阶段。现在,科技的进步和经济的发展对能源与环境提出了更高的要求,相信在政府和社会的大力支持下,紧紧依托太阳能热水器这个成熟的大市场,太阳能空调技术一定有广阔的应用前景。

=============================

单从能源消耗上来说,不节能。但是有可能省钱。

溴化锂空调,每制1千瓦冷,冷却塔要散18千瓦热量。多出来的08千瓦热量就是消耗的能量。

普通电氟空调,每制1千瓦冷量,冷却塔要散125千瓦左右的热量,多出来的025的热量,就是消耗的能量。

或者这么说,用1千瓦热量的煤去发电,发电厂的热效率是35%,能发电035千瓦。035千瓦的电能去制冷,按1:4的能效比算,能制冷14千瓦。

用1千瓦热量的煤去烧溴化锂,也按35%的热效率算,能被利用去制冷的热量035千瓦。按1:12的能效比算,能制冷042千瓦。

就算1千瓦的煤去烧溴化锂,热效率100%,也只能制冷12千瓦。

也就是说,若用同样的燃料去发电,再用电去制冷,也比直接烧溴化锂制的冷量多,所以溴化锂不节能。

但是,若是有没用的余热废热,利用溴化锂来制冷,就应该算是节能环保。

有意思的是,有大量余热废热的发电厂,普遍采用电氟制冷,原因在于溴化锂机组维修麻烦,冷量衰减大。若在电力供应不足的地方或电力增容不方便的地方,溴化锂空调还是不错的选择。

另外溴化锂空调自带锅炉,现在国家不让上小锅炉,要集中供热。溴化锂空调可以解决一些宾馆的热水问题,所以不少宾馆还是在使用溴化锂空调。

溴化锂中央空调清洗一般包括冷冻水、冷却系统清洗除垢、水处理、溴化锂机组内腔清洗处理、更换新溶液、旧溶液再生、中央空调风机盘管清洗。结垢物和堵塞物坚硬较难清洗,列管堵塞严重,甚至超过管束20%以上、细小管径的热交换器(列管直径在12毫米以下)。

一、杀菌:通过向循环系统加入杀菌药剂,清除循环水中的各种细菌和藻类。

二、加入剥离剂,将管道内的生物粘泥剥离脱落,通过循环将粘泥清洗出来。

三、加入化学清洗剂、分散剂、将管道系统内的浮锈、垢、油污清洗下来,分散排出,还原成清洁的金属表面。

四、投入预膜药剂,在金属表面形成致密的聚合高分子保护膜,以起防蚀作用。

五、加入缓蚀剂,避免金属生锈,同时加入阻垢剂,通过综合作用,防止钙镁离子结晶沉淀。并定期抽验,监控水质。

空调清洗的必要性:

1、影响健康空调工作时具有吸尘器一样的功效——抽进室内空气,经过与潮湿的蒸发器全面接触后,再吹回室内;长此以往,空调的过滤网和散热片上积聚大量的灰尘,污垢,胺,碱,病毒等有害物质。而使用空调的房间很少开窗换气,所以大量的细菌,螨虫,病毒随着冷热空气在室内循环,日复一日,一只无形的杀手伸向了人类的健康。

2、增加能耗同时,污垢使循环受阻,导致制冷(热)系统工作压力升高,压缩机运转负荷增大,表现为噪音增大,制冷(热)效率下降,耗电量大大增加。

3、故障增多空调长期在非正常条件下工作,压缩机和其它部件磨损严重,从而引起各种故障,严重影响空调的使用寿命。

清洗空调的好处:

1、杀菌除味清岚专业空调清洗能安全,迅速的清除污垢,胺,烟碱,病毒,螨虫等有害物质,并祛除烟味,汗味,体味等异味。

2、节能环保清洗后的空调制冷(热)效率提高,降低了耗电量,从而节约了能源开支。以一台输入功率为两千瓦的空调为例。使用2年后污垢达到02毫米,通过清洗后可节约42%的电费,其每年使用12,1,6,7,8共五个月,若一天使用四小时,电费为061元/千瓦时,则清洗后一年可节约电费为2430506142%=308元。

3、保护空调清洗后的空调在正常状态下工作,大大降低了故障率,延长了空调的使用寿命。

空调制冷效果差的原因:

一、冷凝器出故障:一般空调出现了故障多半就是冷凝器受损,室外冷凝器也是有它自己的自我保护系统,当没有定期给它清洁时,它就会启动自己的保护系统。所以为了引起不必要的麻烦,尽可能的定时去清理它。

二、制冷剂泄漏:在一般情况下,如果是一台安装合格的中央空调,通常五六年之内是不会发生空调制冷效果变差的现象,如果用户家中安装的是氟系统的空调,很有可能是因为空调缺氟了。如果空调内的氟不足,空调的制冷效率就会变低,造成中央制冷效果差。用户可以通过观察室外机的细铜管有没有油迹,结霜结冰的现象,如果有,就是该加氟了。

三、过滤网太脏:长期不对中央空调过滤网进行清洗,过滤网上就会残留过多的灰尘,造成过滤网的堵塞,冷气无法正常从过滤网输送到室内,就会使室内温度无法达到设定温度,这也是中央空调制冷效果差的最常见的原因。

四、补充制冷剂:如果是制冷剂用完的原因导致中央空调制冷效果差,用户可以找专业的售后或者维修人员为家中的空调补充制冷剂量,还应该注意排查是否是因为制冷剂管路泄漏,导致了制冷剂的泄漏,为了防止以后再出现类似情况,应该用专业设备检查制冷剂管道,修复后再补充制冷量。

1、机组安装前,设备的内压符合设备技术文件规定的出厂压力。

2、设备就位后,应按设备技术文件规定的基准面(如管板上的测量标记孔或其他加工面)找正水平,其纵向必须、横向不水平度均不应超过05/1000;双筒吸收式制冷机应分别找正上下筒的水平。

3、真空泵就位后,应找正水平,抽气连接管应采用金属管,其直径应与真空历史意义的进口直径应与真空泵的进口直径相同;如必须采用橡胶管作吸气管时,应采用真空胶管,并对管接头处采取密封措施。

4、屏蔽泵应找下水平,电线接头处应防水密封。

5、蒸汽管和冷媒水管应隔热保温,保温层的厚度和材料应符合设计规定。

6、制冷系统安装后,应对设备内部进行清洗。清洗时,将清洁水加入设备内,开动发生器泵,吸收器泵和蒸发器泵,使水在系统内循环,反复多次,并观察水的颜色直至设备内部清洁为止。

7、进行制冷系统气密性试验时,系统内应充入压力为0196兆帕(2公斤力/平方厘米 )的干燥空气中充灌适量规定的制冷剂,用卤素检漏税仪检查仪检查)设备及管道的密封性。

8、进行制冷设备真空泵试验时,应在真空泵吸入管道上装上真空度测量仪,关闭真空泵上与制冷系统连通的阀门,启动真空泵,抽至压力在0133千帕(1毫米汞柱)以下时停泵,然后观察真空度测量仪,确定有无泄漏。

9、进行制冷系统抽真空试验时,应将系统压力抽至0267千帕(2毫米汞柱),关闭真空泵上的抽气阀门,保持24小时,以使系统内压力上升不应超过0133千帕(1毫米汞柱)。

10、向制冷系统加入按设备技术文件规定配制的溴化锂溶液,应先在容器中进行沉淀,然后将系统抽真空至压力为0267千帕(2毫米汞柱)以下,再将与抽气连接的连接管一端连接于热交换器稀溶液加液阀门,并扎紧使其密封,连接管的另一端插入加应付桶离桶底100毫米。溶液的加入量应符合设备技术文件的规定。

11、制冷系统的试运转就符合下列要求:

(1)启动运转

1、应向冷却水系统供水和向蒸发器供冷媒水,水温均不应低于20℃,水量应符合设备技术文件的规定;

2、启动了发生器泵、吸收器泵及真空泵,使溶液循环,继续将系统内空气抽除,使真空度高于0133千帕(1毫米汞柱)。

3、应逐渐开启蒸汽阀门,向发生器供汽,使机器先在较低蒸汽压力状态下运转,无异常现象后,再逐渐提高蒸汽压力至设备技术文件的规定值,并调节制冷机,使其正常运转。

(2)运转中

1:稀溶液、浓溶液和混合溶液的浓度和温度应符合设备技术文件的规定;

2:冷却水、冷媒水的水量、水温和进出口温度差应符合设备技术文件的规定;

3:加热蒸汽的压力、温度和凝结水的温度、流量应符合设备技术文件的规定;

4:冷剂水中溴化锂的比重不应超过11;

5:系统应保持规定的真空度;

6:屏蔽泵的工作稳定,应无阻塞、过热、异常声响等现象;

7:各种仪表指示应正常。

以上就是关于溴化理空调的工作原理全部的内容,包括:溴化理空调的工作原理、溴化锂是制冷剂吗、溴化锂空调是否节能等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:聚客百科

原文地址: https://juke.outofmemory.cn/life/3634383.html

()
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-22
下一篇 2023-04-22

发表评论

登录后才能评论

评论列表(0条)

保存