欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。
素数与质数一样。
质数(又称素数),是指在大于1的自然数中,除了1和它本身外,不能被其他自然数整除(除0以外)的数称之为素数(质数)。比1大但不是素数的数称为合数,1和0既非素数也非合数。
素数不是奇数。奇数是不能被2整除的数。比如9是奇数,但不是素数。因为9不能被2整除,所以是奇数,但9有1、3、9三个因数,所以不是素数。
扩展资料:一、质数性质
质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。
具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,n+1是素数或者不是素数。
如果n+1为素数,则n+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。
因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
二、数目计算
1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。
2、存在任意长度的素数等差数列。
3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。(挪威数学家布朗,1920年)
4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,1948年)
5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)(中国潘承洞,1968年)
6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2)