拉格朗日定理是什么

拉格朗日定理是什么,第1张

分别为:微积分中的拉格朗日中值定理;数论中的四平方和定理;群论中的拉格朗日定理 (群论)。

拉格朗日中定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。

发展简史

人们对拉格朗日中值定理的认识可以上溯到公元前古希腊时代。古希腊数学家在几何研究中得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的底”。这正是拉格朗日定理的特殊情况,古希腊数学家阿基米德正是巧妙地利用这一结论,求出抛物弓形的面积.。

意大利卡瓦列里在《不可分量几何学》(1635年)的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦。这是几何形式的微分中值定理,被人们称为卡瓦列里定理。该定理是拉格朗日中值定理在几何学中的表达形式。

拉格朗日定理公式是:设 \(p\) 为素数,在模 \(p\) 意义下的 \(n\) 次多项式 \(f(x) = a_n\cdot x^n+\cdots+a_1\cdot x+a_0 (p\nmid a_n)\) ,那么同余方程 \(f(x)\equiv 0\pmod p\) 在模 \(p\) 意义下最多有 \(n\) 个不同的解。

证明:

对 \(n\) 使用数学归纳法。当 \(n=0\) 时,由于 \(p\not\mid a_0\) ,所以方程无解。那么当 \(n=0\) 是定理成立。

假设命题对次数小于 \(n\) 的多项式都成立。通过证明如果 \(n\) 次多项式有 \(n+1\) 个解,那么 \(n-1\) 次多项式有 \(n\) 个解来推出矛盾。

考虑次数为 \(n\) 的多项式。如果存在一个 \(n\) 次多项式 \(f(x)\) ,使得 \(f(x)\equiv 0\pmod p\) 在模 \(p\) 意义下有 \(n+1\) 个不同解 \(x_0, x_1,\dots,x_n\) 。

因式分解可得 \(f(x)=(x-x_0)\cdot g(x)\) ,其中 \(g(x)\) 在模 \(p\) 意义下是一个至多 \(n-1\) 次的多项式。所以对任意 \(x_i (1\leq i\leq n)\) 。

有:\[(x_i-x_0)g(x_i)\equiv f(x_i)\equiv 0\pmod p\],而 \(x_i\not\equiv x_0\pmod p\) ,所以 \(g(x_i)\equiv 0\pmod p\) ,从而 \(g(x)=0\pmod p\) 在模 \(p\) 意义下至少有 \(n\) 个解,与归纳假设矛盾。

所以定理对 \(n\) 次多项式也成立。

若函数f(x)在区间[a,b]满足以下条件:

(1)在[a,b]连续。

(2)在(a,b)可导。

则在(a,b)中至少存在一点f'(c)=[f(b)-f(a)]/(b-a)a<c<b,使或f(b)-f(a)=f'(c)(b-a)成立,其中a<c<b。

拉格朗日定理存在于多个学科领域中,分别为:微积分中的拉格朗日中值定理;数论中的四平方和定理;群论中的拉格朗日定理 (群论)。

主要贡献:

拉格朗日在数学、力学和天文学三个学科中都有重大历史性贡献,但他主要是数学家,研究力学和天文学的目的是表明数学分析的威力。全部著作、论文、学术报告记录、学术通讯超过500篇。

拉格朗日的学术生涯主要在18世纪后半期。当对数学、物理学和天文学是自然科学主体。数学的主流是由微积分发展起来的数学分析,以欧洲大陆为中心;物理学的主流是力学;天文学的主流是天体力学。

数学分析的发展使力学和天体力学深化,而力学和天体力学的课题又成为数学分析发展的动力。当时的自然科学代表人物都在此三个学科做出了历史性重大贡献。下面就拉格朗日的主要贡献分别评述。


欢迎分享,转载请注明来源:聚客百科

原文地址: http://juke.outofmemory.cn/pretty/2933310.html

()
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-11
下一篇 2023-02-11

发表评论

登录后才能评论

评论列表(0条)

保存