级数收敛的判别方法

级数收敛的判别方法,第1张

一般项级数的阿贝尔判别法和狄利克雷判别法:

阿贝尔判别法:如果级数的通项可以拆成两部分的乘积,其中一部分随下标单调有界,以另一部分为通项的级数收敛,那么原级数收敛。

狄利克雷判别法:如果级数的通项可以拆成两部分的乘积,其中一部分随下标单调趋于零,以另一部分为通项的级数的部分和有界,那么原级数收敛。

这两个判别法对于一些通项为两项以上乘积形式的级数非常有效。局限性:如果拆不出来,那就没办法了。不过通常的题最多就考到这里,基本上应该可以判别。

绝对收敛

一个收敛的级数,如果在逐项取绝对值之后仍然收敛,就说它是绝对收敛的;否则就说它是条件收敛的。

简单的比较级数就表明,只要∑|un|收敛就足以保证级数收敛;因而分解式(不仅表明∑|un|的收敛隐含着原级数∑un的收敛,而且把原级数表成了两个收敛的正项级数之差。由此易见,绝对收敛级数同正项级数一样,很像有限和,可以任意改变项的顺序以求和,可以无限分配地相乘。

但是条件收敛的级数,即收敛而不绝对收敛的级数,决不可以这样。这时式右边成为两个发散(到+∞)的、其项趋于零的、正项级数之差,对此有黎曼定理。

1、对于所有级数都适用的根本方法是:柯西收敛准则。因为它的本质是将级数转化成数列,从而这是一个最强的判别法,柯西收敛准则成立是级数收敛的充分必要条件。

局限性:有一些数列的特征太过明显,可以用更加简洁的判别法去判别,用柯西收敛原理是浪费时间;另一方面,如果级数本身过于复杂,用柯西收敛准则也未必能很快得到证明。

2、对于正项级数,一个基本但不常用的方法是部分和有界,这同样是级数收敛的充分必要条件,这是正项级数中最强的判别法之一,局限性也是显然的:通常来说一个级数的和函数并不好求,用这种方法行不通,因此这个方法通常只有理论上的意义。

3、对于正项级数,比较判别法是一个相当有效的判别法,通过找一个新正项级数,比较通项,如果原级数的通项小,新级数收敛,则原级数收敛;如果新级数发散,原级数通项大,则原级数发散,通常在判别过程中使用其极限形式。

局限性:当级数过于复杂时,要找的那个新级数究竟是什么很难判断,通常的方法是对原级数的通项做泰勒展开,以找到与之等价的p级数。

4、对于正项级数,有积分判别法:如果x>=1且f(x)〉=0且递减,则无穷级数(通项为f(n))与1到正无穷对f(x)作的积分同敛散。这个办法对于某些级数特别有效。局限性:由于其本质是将级数化成了反常积分,如果化成的反常积分的收敛性难以判断,则有可能该方法就把问题复杂化了。

5、对于正项级数,还有拉贝判别法与高斯判别法。拉贝判别法是将级数与通项为1/(n^alpha)的级数做比较,如果当n充分大时,n(a[n]/a[n+1]-1)〉=r>1,那么级数收敛。

高斯判别法将级数与通项为1/(n(lnn)^alpha)的级数做比较,如果a[n]/a[n+1]=1+1/n+beta/nlnn+o(1/nlnn),其中beta〉1,则级数收敛。

局限性:这两个判别法已经很强了,大部分级数都可以用这两个判别法去估计,但是仍然不是全部级数都有效的,如果级数比通项为1/(n(lnn)^alpha)的级数收敛得还慢,就无效了,这时应该去想比较判别法或者其他办法,可能需要比较强的技巧。

6、对于交错级数,有莱布尼兹判别法:如果级数符号交替且通项绝对值递减,则级数收敛。局限性:如果级数不满足上述条件,显然就失效了。

7、一般项级数的阿贝尔判别法和狄利克雷判别法:

阿贝尔判别法:如果级数的通项可以拆成两部分的乘积,其中一部分随下标单调有界,以另一部分为通项的级数收敛,那么原级数收敛。

狄利克雷判别法:如果级数的通项可以拆成两部分的乘积,其中一部分随下标单调趋于零,以另一部分为通项的级数的部分和有界,那么原级数收敛。

这两个判别法对于一些通项为两项以上乘积形式的级数非常有效。局限性:如果拆不出来,那就没办法了。不过通常的题最多就考到这里,基本上应该可以判别。

1、正项级数比较判别法

简而言之,小于收敛正项级数的必然收敛,大于发散正向级数的必然发散。其中可以存在倍数关系,可以将一个级数放大或缩小再进行比较。若用极限形式,就是二者的比值的极限值是一个有限的正数即可。

2、任意项级数阿贝尔判别法

其中一组级数收敛;另一组级数单调有界;那么二者的乘积构成的级数收敛。

绝对收敛

一个收敛的级数,如果在逐项取绝对值之后仍然收敛,就说它是绝对收敛的;否则就说它是条件收敛的。

简单的比较级数就表明,只要∑|un|收敛就足以保证级数收敛;因而分解式(不仅表明∑|un|的收敛隐含着原级数∑un的收敛,而且把原级数表成了两个收敛的正项级数之差。由此易见,绝对收敛级数同正项级数一样,很像有限和,可以任意改变项的顺序以求和,可以无限分配地相乘。

但是条件收敛的级数,即收敛而不绝对收敛的级数,决不可以这样。这时式右边成为两个发散(到+∞)的、其项趋于零的、正项级数之差,对此有黎曼定理。


欢迎分享,转载请注明来源:聚客百科

原文地址: http://juke.outofmemory.cn/pretty/2905536.html

()
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-06
下一篇 2023-02-06

发表评论

登录后才能评论

评论列表(0条)

保存