勾3股4弦5三角形的角度是多少?

什么是丹毒2023-01-29  28

弦5相对着的角是90度,勾3的对角是37度,股4的对角为53度。

详细解释:首先由勾3股4弦5知三角形满足勾股定理,是直角三角形;设勾3的对角是A,股4的对角为B。

那么sinA=3/5,A=arcsin3/5=37度。

sinB=4/5,B=arcsin4/5=53度。

扩展资料

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

参考资料来源:百度百科——勾股定理

勾3股4弦5是勾股角90度,勾弦角60度,股弦角30度。勾3股4弦5是著名的勾股定理。当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。

在我国,把直角三角形的两直角边的平方和等于斜边的平方,叫做勾股定理或勾股弦定理,又称毕达拉斯定理或毕氏定理。是一个基本的几何定理,传统上认为是由古希腊的毕达拉斯所证明。勾三股四弦五直角三角形的内切圆直径为2。故有“勾三股四弦五径二”之说。

计算公式(A/B/C为三个角):

a^2=b^2+c^2-2*b*c*CosA

b^2=a^2+c^2-2*a*c*CosB

c^2=a^2+b^2-2*a*b*CosC

CosC=(a^2+b^2-c^2)/2ab

CosB=(a^2+c^2-b^2)/2ac

CosA=(c^2+b^2-a^2)/2bc

(注:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。)

扩展内容:

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

参考资料:百度百科勾股定理


转载请注明原文地址:http://juke.outofmemory.cn/read/2825688.html

最新回复(0)