杨振宁那个理论是读宇称(cheng)守恒还是宇称(chen)守恒

杨振宁那个理论是读宇称(cheng)守恒还是宇称(chen)守恒,第1张

cheng啊,你用搜狗输入法试一下就行了。

宇称守恒是指在任何情况下,任何粒子的镜象与该粒子除自旋方向外,具有完全相同的性质

这里要说明的是:

该定律于1926年提出,在强力、电磁力和万有引力中相继得到证明,但在1956年被证实在弱相互作用中不成立。杨振宁与李政道提出的是“弱相互作用中宇称不守恒”的理论假设,后来被中国的吴健雄女士(被称为“中国居里夫人”)证实了他们这个假设,最后获得诺贝尔奖。

杨振宁和李政道合作,用科学实验的事实去推翻“宇称守恒定律”。1956年,他们提出弱相互作用中宇称不守恒的理论,打破了曾被认为不可动摇的“宇称守恒定律”,使基本粒子理论得到迅速的发展。科学家们心悦诚服,一致认为,这是近代理论物理学上最重大的发现之一。

宇称不守恒定律是指在弱相互作用中,互为镜像的物质的运动不对称由吴健雄用钴60验证。

科学界在1956年前一直认为宇称守恒,也就是说一个粒子的镜像与其本身性质完全相同1956年,科学家发现θ和γ两种介子的自旋,质量,寿命,电荷等完全相同,多数人认为它们是同一种粒子,但θ衰变时产生两个π介子,γ衰变时产生3个,这又说明它们是不同种粒子

1956年,李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言:τ和θ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同,通俗地说,这两个相同的粒子如果互相照镜子的话,它们的衰变方式在镜子里和镜子外居然不一样!用科学语言来说,“θ-τ”粒子在弱相互作用下是宇称不守恒的

在最初,“θ-τ”粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,同为华裔的实验物理学家吴健雄用一个巧妙的实验验证了“宇称不守恒”,从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。

吴健雄用两套实验装置观测钴60的衰变,她在极低温(001K)下用强磁场把一套装置中的钴60原子核自旋方向转向左旋,把另一套装置中的钴60原子核自旋方向转向右旋,这两套装置中的钴60互为镜像。实验结果表明,这两套装置中的钴60放射出来的电子数有很大差异,而且电子放射的方向也不能互相对称。实验结果证实了弱相互作用中的宇称不守恒。

我们可以用一个类似的例子来说明问题。假设有两辆互为镜像的汽车,汽车A的司机坐在左前方座位上,油门踏板在他的右脚附近;而汽车B的司机则坐在右前方座位上,油门踏板在他的左脚附近。现在,汽车A的司机顺时针方向开动点火钥匙,把汽车发动起来,并用右脚踩油门踏板,使得汽车以一定的速度向前驶去;汽车B的司机也做完全一样的动作,只是左右交换一下——他反时针方向开动点火钥匙,用左脚踩油门踏板,并且使踏板的倾斜程度与A保持一致。现在,汽车B将会如何运动呢?

也许大多数人会认为,两辆汽车应该以完全一样的速度向前行驶。遗憾的是,他们犯了想当然的毛病。吴健雄的实验证明了,在粒子世界里,汽车B将以完全不同的速度行驶,方向也未必一致!——粒子世界就是这样不可思议地展现了宇称不守恒。

1、宇称不守恒定律是什么意思

宇称不守恒的意思:宇称不守恒并不是一个局部性的理论发展,它影响了整个物理学界的方方面面,是囊括了分子、原子和基本粒子物理的一个基本,所以对称性在20世纪物理学里很重要。

2、什么是宇称不守恒

宇称不守恒定律是指在弱相互作用中,互为镜像的两个物质的运动不对称,由著名的物理学家吴健雄用钴60验证。科学界在1956年以前一直认为宇称守恒,也就是说一个粒子的镜像与其本身的性质完全相同,1956年,科学家发现θ和γ两种粒子的自旋、质量、寿命、电荷完全相同,大多数人认为它们是同一种粒子,但是θ衰变时产生两个π介子,γ衰变时产生3个,这又说明它们是不同的粒子。换一种方式来说就是对称性反映了不同物质形态在运动中的共性,而对称性的破坏才使它们显示出各自的特性。

如同图案一样,只有对称没有它的破坏,看上去虽然很规则,但同时又显得单调和呆板,只有基本上对称而又不完全对称才构成美的建筑和图案,大自然就是这这样的建筑师,当大自然构造像DNA这样的大分子的时候,总是遵循复制的原则,将分子按照对称的螺旋结构联接在一起,而构成螺旋结构的空间排列又是完全相同的,但是在复制的过程中,对精确对称性的细微偏离就会在大分子排列次序上产生新的可能性,从而使得那些更便于复制的样式更快地发展,形成了发育的过程。

用一个类似的例子来说明问题:假设有两辆互为镜像的汽车,汽车A的司机坐在左前方的位子上,油门踏板在他的右脚附近,;而汽车B的司机坐在右前方的座位上,油门踏板在其左脚位置。现在汽车A的司机顺时针方向开动点火钥匙,把汽车发动起来,并用右脚踩油门踏板使得汽车以一定的速度向前驶去;而汽车B的司机也做完全一样的动作,只是左右交换一下,——他逆时针方向点火开动汽车,用左脚踩油门,并使踏板的倾斜程度与A保持一致。那么现在汽车B会怎么运动呢?

按照我们正常的思维,两辆汽车应该以完全相同的速度向着相同的方向行驶,遗憾的是,这不过是我们想当然的,在粒子世界里,这并不一定。吴健雄用实验证实了,在粒子世界里,两辆汽车将以完全不同的速度行驶,方向也未必会相同。粒子世界就是这样不可思议地展现了宇称不守恒。

宇称不守恒的发现不是孤立的基本粒子有三个基本的对称方式,一个是粒子和反粒子互相对称,即对于粒子和反粒子,定律是相同的,这被称为电荷对称;一个是空间反射对称,即同一种粒子之间互为镜像,它们的运动规律是相同的,这叫宇称;一个是时间反演的对称,即我们颠倒粒子的运动方向,粒子的运动是相同的,这被称为时间对称。

但是自从宇称不守恒定律被李政道和杨振宁提出之后,科学家很快又发现粒子和反粒子的行为并不是完全一样的,一些科学家进而提出,可能正是由于物理定律的轻微不对称使粒子的电荷不对称,导致宇宙大爆炸之初生成的物质比反物质要多了一点点,大部分的物质和反物质互相湮灭了,剩下的物质才行成了我们今天所认识的世界,如果物理定律完全对称,宇宙连同我们自身都不会存在。接下来,科学家发现时间本身也不具有对称性了。在1998年末,物理学家首次在微观世界发现了违背时间对称性的事件,欧洲原子能研究中心的科研人员发现,正负k介子在转换过程中存在时间上的不对称性:反k介子转换为k介子的速率完比其逆转过程,即k介子转变为负k介子来的要快。至此,粒子世界的物理规律的对称性全部都不复存在了,世界上从本质上来说就是不完美的。

;

宇称不守恒定律是指在弱相互作用中,互为镜像的物质的运动不对称。由吴健雄用钴60验证。

科学界在1956年前一直认为宇称守恒,也就是说一个粒子的镜像与其本身性质完全相同。1956年,科学家发现θ和γ两种介子的自旋,质量,寿命,电荷等完全相同,多数人认为它们是同一种粒子,但θ衰变时产生两个π介子,γ衰变时产生3个,这又说明它们是不同种粒子。

1956年,李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言:τ和θ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同,通俗地说,这两个相同的粒子如果互相照镜子的话,它们的衰变方式在镜子里和镜子外居然不一样!用科学语言来说,“θ-τ”粒子在弱相互作用下是宇称不守恒的。

在最初,“θ-τ”粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,同为华裔的实验物理学家吴健雄用一个巧妙的实验验证了“宇称不守恒”,从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。

宇称不守恒的发现并不是孤立的。

在微观世界里,基本粒子有三个基本的对称方式:一个是粒子和反粒子互相对称,即对于粒子和反粒子,定律是相同的,这被称为电荷(C)对称;一个是空间反射对称,即同一种粒子之间互为镜像,它们的运动规律是相同的,这叫宇称(P);一个是时间反演对称,即如果我们颠倒粒子的运动方向,粒子的运动是相同的,这被称为时间(T)对称。

这就是说,如果用反粒子代替粒子、把左换成右,以及颠倒时间的流向,那么变换后的物理过程仍遵循同样的物理定律。

但是,自从宇称守恒定律被李政道和杨振宁打破后,科学家很快又发现,粒子和反粒子的行为并不是完全一样的!一些科学家进而提出,可能正是由于物理定律存在轻微的不对称,使粒子的电荷(C)不对称,导致宇宙大爆炸之初生成的物质比反物质略多了一点点,大部分物质与反物质湮灭了,剩余的物质才形成了我们今天所认识的世界。

如果物理定律严格对称,宇宙连同我们自身就都不会存在了--宇宙大爆炸之后应当诞生了数量相同的物质和反物质,但正反物质相遇后就会立即湮灭,那么,星系、地球乃至人类就都没有机会形成了。

宇称不守恒定律是指在弱相互作用中,互为镜像的物质的运动不对称由吴健雄用钴60验。

科学界在1956年前一直认为宇称守恒,也就是说一个粒子的镜像与其本身性质完全相同1956年,科学家发现θ和γ两种介子的自旋,质量,寿命,电荷等完全相同,多数人认为它们是同一种粒子,但θ衰变时产生两个π介子,γ衰变时产生3个,这又说明它们是不同种粒子

1956年,李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言:τ和θ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同,通俗地说,这两个相同的粒子如果互相照镜子的话,它们的衰变方式在镜子里和镜子外居然不一样!

用科学语言来说,“θ-τ”粒子在弱相互作用下是宇称不守恒的 在最初,“θ-τ”粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,同为华裔的实验物理学家吴健雄用一个巧妙的实验验了“宇称不守恒”,从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。

吴健雄用两套实验装置观测钴60的衰变,她在极低温(001K)下用强磁场把一套装置中的钴60核自旋方向转向左旋,把另一套装置中的钴60核自旋方向转向右旋,这两套装置中的钴60互为镜像。实验结果表明,这两套装置中的钴60放射出来的电子数有很大差异,而且电子放射的方向也不能互相对称。实验结果实了弱相互作用中的宇称不守恒。

我们可以用一个类似的例子来说明问题。假设有两辆互为镜像的汽车,汽车A的司机坐在左前方座位上,油门踏板在他的右脚附近;而汽车B的司机则坐在右前方座位上,油门踏板在他的左脚附近。现在,汽车A的司机顺时针方向开动点火钥匙,把汽车发动起来,并用右脚踩油门踏板,使得汽车以一定的速度向前驶去;汽车B的司机也做完全一样的动作,只是左右交换一下——他反时针方向开动点火钥匙,用左脚踩油门踏板,并且使踏板的倾斜程度与A保持一致。现在,汽车B将会如何运动呢?

也许大多数人会认为,两辆汽车应该以完全一样的速度向前行驶。遗憾的是,他们犯了想当然的毛病。吴健雄的实验明了,在粒子世界里,汽车B将以完全不同的速度行驶,方向也未必一致!——粒子世界就是这样不可思议地展现了宇称不守恒。 宇宙源于不守恒 [编辑本段] 宇称不守恒的发现并不事立的。

在微观世界里,基本粒子有三个基本的对称方式:一个是粒子和反粒子互相对称,即对于粒子和反粒子,定律是相同的,这被称为电荷(C)对称;一个是空间反射对称,即同一种粒子之间互为镜像,它们的运动规律是相同的,这叫宇称(P);一个是时间反演对称,即如果我们颠倒粒子的运动方向,粒子的运动是相同的,这被称为时间(T)对称。

这就是说,如果用反粒子代替粒子、把左换成右,以及颠倒时间的流向,那么变换后的物理过程仍遵循同样的物理定律。

但是,自从宇称守恒定律被李政道和杨振宁打破后,科学家很快又发现,粒子和反粒子的行为并不是完全一样的!一些科学家进而提出,可能正是由于物理定律存在轻微的不对称,使粒子的电荷(C)不对称,导致宇宙大爆炸之初生成的物质比反物质略多了一点点,大部分物质与反物质湮灭了,剩余的物质才形成了我们今天所认识的世界。如果物理定律严格对称,宇宙连同我们自身就都不会存在了——宇宙大爆炸之后应当诞生了数量相同的物质和反物质,但正反物质相遇后就会立即湮灭,那么,星系、地球乃至人类就都没有机会形成了。

接下来,科学家发现连时间本身也不再具有对称性了! 可能大多数人原本就认为时光是不可倒流的。日常生活中,时间之箭永远只有一个朝向,“逝者如斯”,老人不能变年轻,打碎的花瓶无法复原,过去与未来的界限泾渭分明。不过,在物理学家眼中,时间却一直被视为是可逆转的。比如说一对光子碰撞产生一个电子和一个正电子,而正负电子相遇则同样产生一对光子,这两个过程都符合基本物理学定律,在时间上是对称的。如果用摄像机拍下其中一个过程然后播放,观看者将不能判断录像带是在正向还是逆向播放——从这个意义上说,时间没有了方向。

然而,1998年年末,物理学家们却首次在微观世界中发现了违背时间对称性的事件。欧洲能研究中心的科研人员发现,正负K介子在转换过程中存在时间上的不对称性:反K介子转换为K介子的速率要比其逆转过程——即K介子转变为反K介子来得要快。

至此,粒子世界的物理规律的对称性全部破碎了,世界从本质上被明了是不完美的、有缺陷的。 发现过程 [编辑本段] 杨振宁、李政道和吴健雄是中国老百姓耳熟能详的名字,他们的事业巅峰和“宇称”紧紧联系在一起。

用科学家的话说,宇称是内禀宇称的简称。它是表征粒子或粒子组成的系统在空间反射下变换性质的物理量。在空间反射变换下,粒子的场量只改变一个相因子,这相因子就称为该粒子的宇称。我们也可以简单地理解为,宇称就是粒子照镜子时,镜子里的影像。以前人们根据物理界公认的对称性认为,宇称一定是守恒的。这就像有正电子,就一定有负电子一样。杨振宁教授1951年与李政道教授合作,并于1956年共同提出“弱相互作用中宇称不守恒”定律。

宇称不守恒定律是指在弱相互作用中,互为镜像的物质的运动不对称由吴健雄用钴60验证。科学界在1956年前一直认为宇称守恒,也就是说一个粒子的镜像与其本身性质完全相同1956年,科学家发现θ和γ两种介子的自旋、质量、寿命、电荷等完全相同,多数人认为它们是同一种粒子,但θ衰变时产生两个π介子,γ衰变时产生3个,这又说明它们是不同种粒子。

假设有两辆互为镜像的汽车,汽车A的司机坐在左前方座位上,油门踏板在他的右脚附近;而汽车B的司机则坐在右前方座位上,油门踏板在他的左脚附近。现在,汽车A的司机顺时针方向开动点火钥匙,把汽车发动起来,并用右脚踩油门踏板,使得汽车以一定的速度向前驶去;汽车B的司机也做完全一样的动作,只是左右交换一下--他反时针方向开动点火钥匙,用左脚踩油门踏板,并且使踏板的倾斜程度与A保持一致。现在,汽车B将会如何运动呢大多数人会认为,两辆汽车应该以完全一样的速度向前行驶。遗憾的是,他们犯了想当然的毛病。吴健雄的实验证明了,在粒子世界里,汽车B将以完全不同的速度行驶,方向也未必一致!--粒子世界就是这样不可思议地展现了宇称不守恒。

以上就是关于杨振宁那个理论是读宇称(cheng)守恒还是宇称(chen)守恒全部的内容,包括:杨振宁那个理论是读宇称(cheng)守恒还是宇称(chen)守恒、杨振宁和李政道合作,是如何用科学实验的事实去推翻“宇称守恒定律”、宇称不守恒的原因是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:聚客百科

原文地址: http://juke.outofmemory.cn/life/3860920.html

()
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存