什么是染色体

什么是染色体,第1张

什么是染色体??

--------------------------------------------------------------------------------

专家回答: 指经染料染色后用显微镜可以观察到的一种细胞器。在细菌中,染色体是一个裸露的环壮双链DNA分子。在真核生物中,当细胞进行分裂期间染色体呈棒壮结构。染色体的数目是随物种而异,但对每一物种而言,染色体的数目是固定的。染色体是由线性双链DNA分子同蛋白质形成的复合物,真核生物的核基因就分藏在每条染色体中,所以,染色体是基因的载体,也就是遗传信息的载体。一个细胞里的全部染色体也就包含了这个生物的全部遗传信息。

■什么是基因?

含特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。除某些病毒的基因由核糖核酸(RNA)构成以外,多数生物的基因由脱氧核糖核酸(DNA)构成,并在染色体上作线状排列。基因一词通常指染色体基因。在真核生物中,由于染色体都在细胞核内,所以又称为核基因。位于线粒体和叶绿体等细胞器中的基因则称为染色体外基因、核外基因或细胞质基因,也可以分别称为线粒体基因、质粒和叶绿体基因。

在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体称为染色体组或基因组,一个基因组中包含一整套基因。相应的全部细胞质基因构成一个细胞质基因组,其中包括线粒体基因组和叶绿体基因组等。原核生物的基因组是一个单纯的DNA或RNA分子,因此又称为基因带,通常也称为它的染色体。

基因在染色体上的位置称为座位,每个基因都有自己特定的座位。凡是在同源染色体上占据相同座位的基因都称为等位基因。在自然群体中往往有一种占多数的(因此常被视为正常的)等位基因,称为野生型基因;同一座位上的其他等位基因一般都直接或间接地由野生型基因通过突变产生,相对于野生型基因,称它们为突变型基因。在二倍体的细胞或个体内有两个同源染色体,所以每一个座位上有两个等位基因。如果这两个等位基因是相同的,那么就这个基因座位来讲,这种细胞或个体称为纯合体;如果这两个等位基因是不同的,就称为杂合体。在杂合体中,两个不同的等位基因往往只表现一个基因的性状,这个基因称为显性基因,另一个基因则称为隐性基因。在二倍体的生物群体中等位基因往往不止两个,两个以上的等位基因称为复等位基因。不过有一部分早期认为是属于复等位基因的基因,实际上并不是真正的等位,而是在功能上密切相关、在位置上又邻接的几个基因,所以把它们另称为拟等位基因。某些表型效应差异极少的复等位基因的存在很容易被忽视,通过特殊的遗传学分析可以分辨出存在于野生群体中的几个等位基因。这种从性状上难以区分的复等位基因称为同等位基因。许多编码同工酶的基因也是同等位基因。

属于同一染色体的基因构成一个连锁群(见连锁和交换)。基因在染色体上的位置一般并不反映它们在生理功能上的性质和关系,但它们的位置和排列也不完全是随机的。在细菌中编码同一生物合成途径中有关酶的一系列基因常排列在一起,构成一个操纵子(见基因调控);在人、果蝇和小鼠等不同的生物中,也常发现在作用上有关的几个基因排列在一起,构成一个基因复合体或基因簇或者称为一个拟等位基因系列或复合基因。

功能、类别和数目 到目前为止在果蝇中已经发现的基因不下于1000个, 在大肠杆菌中已经定位的基因大约也有1000个,由基因决定的性状虽然千差万别,但是许多基因的原初功能却基本相同。

功能 1945年GW比德尔通过对脉孢菌的研究,提出了一个基因一种酶假设,认为基因的原初功能都是决定蛋白质的一级结构(即编码组成肽链的氨基酸序列)。这一假设在50年代得到充分的验证。

类别 60年代初F雅各布和J莫诺发现了调节基因。把基因区分为结构基因和调节基因是着眼于这些基因所编码的蛋白质的作用:凡是编码酶蛋白、血红蛋白、胶原蛋白或晶体蛋白等蛋白质的基因都称为结构基因;凡是编码阻遏或激活结构基因转录的蛋白质的基因都称为调节基因。但是从基因的原初功能这一角度来看,它们都是编码蛋白质。根据原初功能(即基因的产物)基因可分为:①编码蛋白质的基因。包括编码酶和结构蛋白的结构基因以及编码作用于结构基因的阻遏蛋白或激活蛋白的调节基因。②没有翻译产物的基因。转录成为RNA以后不再翻译成为蛋白质的转移核糖核酸(tRNA)基因和核糖体核酸(rRNA)基因:③不转录的DNA区段。如启动区、操纵基因等等。前者是转录时RNA多聚酶开始和DNA结合的部位;后者是阻遏蛋白或激活蛋白和DNA结合的部位。已经发现在果蝇中有影响发育过程的各种时空关系的突变型,控制时空关系的基因有时序基因 、格局基因 、选择基因等(见发生遗传学)。

一个生物体内的各个基因的作用时间常不相同,有一部分基因在复制前转录,称为早期基因;有一部分基因在复制后转录,称为晚期基因。一个基因发生突变而使几种看来没有关系的性状同时改变,这个基因就称为多效基因。

数目 不同生物的基因数目有很大差异,已经确知RNA噬菌体MS2只有3个基因,而哺乳动物的每一细胞中至少有100万个基因。但其中极大部分为重复序列,而非重复的序列中,编码肽链的基因估计不超过10万个。除了单纯的重复基因外,还有一些结构和功能都相似的为数众多的基因,它们往往紧密连锁,构成所谓基因复合体或叫做基因家族。

相互作用

生物的一切表型都是蛋白质活性的表现。换句话说,生物的各种性状几乎都是基因相互作用的结果。所谓相互作用,一般都是代谢产物的相互作用,只有少数情况涉及基因直接产物,即蛋白质之间的相互作用。

非等位基因的相互作用 依据非等位基因相互作用的性质可以将它们归纳为:

①互补基因。若干非等位基因只有同时存在时才出现某一性状,其中任何一个发生突变时都会导致同一突变型性状,这些基因称为互补基因。

②异位显性基因。影响同一性状的两个非等位基因在一起时,得以表现性状的基因称为异位显性基因或称上位基因。

③累加基因。对于同一性状的表型来讲,几个非等位基因中的每一个都只有部分的影响,这样的几个基因称为累加基因或多基因。在累加基因中每一个基因只有较小的一部分表型效应,所以又称为微效基因。相对于微效基因来讲,由单个基因决定某一性状的基因称为主效基因。

④修饰基因。本身具有或者没有任何表型效应,可是和另一突变基因同时存在便会影响另一基因的表现程度的基因。如果本身具有同一表型效应则和累加基因没有区别。

⑤抑制基因。一个基因发生突变后使另一突变基因的表型效应消失而恢复野生型表型,称前一基因为后一基因的抑制基因。如果前一基因本身具有表型效应则抑制基因和异位显性基因没有区别。

⑥调节基因。一个基因如果对另一个或几个基因具有阻遏作用或激活作用则称该基因为调节基因。调节基因通过对被调节的结构基因转录的控制而发挥作用。具有阻遏作用的调节基因不同于抑制基因,因为抑制基因作用于突变基因而且本身就是突变基因,调节基因则作用于野生型基因而且本身也是野生型基因。

⑦微效多基因。影响同一性状的基因为数较多,以致无法在杂交子代中明显地区分它们的类型,这些基因统称为微效多基因或称多基因。

⑧背景基因型。从理论上看,任何一个基因的作用都要受到同一细胞中其他基因的影响。除了人们正在研究的少数基因以外,其余的全部基因构成所谓的背景基因型或称残余基因型。

等位基因的相互作用 1932年HJ马勒依据突变型基因与野生型等位基因的关系归纳为无效基因、亚效基因、超效基因、新效基因和反效基因。

①无效基因。不能产生野生型表型的、完全失去活性的突变型基因。一般的无效基因却能通过回复突变而成为野生型基因。

②亚效基因。表型效应在性质上相同于野生型,可是在程度上次于野生型的突变型基因。

③超效基因。表型效应超过野生型等位基因的突变型基因。

④新效基因。产生野生型等位基因所没有的新性状的突变型基因。

⑤反效基因。作用和野生型等位基因相对抗的突变型基因。

⑥镶嵌显性。对于某一性状来讲,一个等位基因影响身体的一个部分,另一等位基因则影响身体的另一部分,而在杂合体中两个部分都受到影响的现象称为镶嵌显性。

基因和环境因素的相互作用 基因作用的表现离不开内在的和外在的环境的影响。在具有特定基因的一群个体中,表现该基因性状的个体的百分数称为外显率;在具有特定基因而又表现该一性状的个体中,对于该一性状的表现程度称为表现度。外显率和表现度都受内在环境和外在环境的影响。

内在环境 指生物的性别、年龄等条件以及背景基因型。

①性别。性别对于基因作用的影响实际上是性激素对基因作用的影响。性激素为基因所控制,所以实质上这些都是基因相互作用的结果。

②年龄。人类中各个基因显示它的表型的年龄有很大的区别。

③背景基因型。通过选择,可以改变动植物品系的某一遗传性状的外显率和表现度,说明一些基因的作用往往受到一系列修饰基因或者背景基因型的影响。

由于背景基因型的差异而造成的影响,在下述3种情况中可以减低到最低限度:由高度近交得来的纯系;一卵双生儿;无性繁殖系(包括某些高等植物的无性繁殖系、微生物的无性繁殖系以及高等动物的细胞株)。用这些体系作为实验系统,可以更为明确地显示环境因素的影响,更为确切地说明某一基因的作用。双生儿法在人类遗传学中的应用及纯系生物在遗传学和许多生物学研究中的应用都是根据这一原理。

外在环境 ①温度。温度敏感突变型只能在某些温度中表现出突变型的性状,对于一般的突变型来说,温度对于基因的作用也有程度不等的影响。②营养。家兔脂肪的**决定于基因y的纯合状态以及食物中的叶黄素的存在。如果食物中不含有叶黄素,那么yy纯合体的脂肪也并不呈**。y基因的作用显然和叶黄素的同化有关。

演化 就细胞中DNA的含量来看,一般愈是低等的生物含量愈低,愈是高等的生物含量愈高。就基因的数量和种类来讲,一般愈是低等的生物愈少,愈是高等的生物愈多。DNA含量和基因数的增加与生理功能的逐渐完备是密切相关的。

基因最初是一个抽象的符号,后来证实它是在染色体上占有一定位置的遗传的功能单位。大肠杆菌乳糖操纵子中的基因的分离和离体条件下转录的实现进一步说明基因是实体。今已可以在试管中对基因进行改造(见重组DNA技术)甚至人工合成基因。对基因的结构、功能、重组、突变以及基因表达的调控和相互作用的研究始终是遗传学研究的中心课题。

■什么是基因治疗

在认识和熟练使用遗传生物学单位基因的新近进展后,它已经为科学家去改变病人的遗传物质,以达到治病防病的目的迈向新的一步。基因治疗的一个主要目标是用一种缺陷基因的健康复制去提供给细胞。这一方法是革命性的:医生试图通过改变病人细胞的遗传物质,来代替给病人治疗或控制遗传疾病的药物,最终达到医治病人疾病的根本目的。

几百个主要健康问题受到基因功能的影响。在将来,基因治疗能被用于医治许多这类疾病。理论上讲为了防止遗传缺陷传给下一代,还能用于改变胚胎细胞(蛋或种子)。然而,胚胎家系基因治疗的可能性受到困难的伦理道德、社会问题和技术障碍牵制。

基因治疗还作为药物输送系统使用,为了做到这点,产生有用物质的基因将被嵌进病人细胞的DNA中。例如,在血管外科中,产生抗凝血因子的基因能被嵌入血管细胞家系的DNA中,有助于防止血栓的形成。许多其它疾病可使用这一般方法治疗来提高本身的可靠性。

当医疗治疗提高到分子水平时,药物输送使用基因治疗能节约时间减低成本。为收集大量的基因蛋白产品、提纯产品、合成药物和对病人的管理缩短了时间减少了复杂的工艺加工。

然而,基因治疗仍是处于极端新的和高度的实验阶段。被批准的试验数量是小的,今天只有少量的病人曾得到过治疗。

目前基因治疗实验的基本步骤

在目前的某些实验中,从病人的血液或骨髓中取出细胞,并在加速繁殖的实验条件下生长。然后,把需要的基因借助于不起作用的病毒嵌进细胞。选择出获得成功改变的细胞再加速繁殖,再回到病人的体内。另一种情况,脂质体(脂肪颗粒)或不起作用的病毒可被用于把基因直接输进病人体内细胞。

基因治疗的基本要求

基因治疗的潜力

基因治疗为治愈人类疾病提供了新的范例。不是通过制剂与基因产品或自身基因产品相互作用来改变疾病的表现型,而是基因治疗理论上能修正特殊基因,导致沿着简单化的管理治愈疾病。开始基因治疗是针对治疗遗传性疾病,但目前对广泛性的疾病进行研究,包括癌症、外周血管疾病、关节炎、神经变性疾病和其它后天疾病。

基因确认和克隆

即使基因治疗战略性的范围是相当多样化,成功的基因治疗也需要一定的关键的基本要素。其中最重要的要素是必须确认和克隆有关的基因。直到人类基因组计划完成,基因的有效度才被利用。但仍然等到涉及疾病的相关基因被确认和克隆出来才开始实施基因治疗战略。

转基因和基因表达

一旦确认和克隆出基因,下一步必须表达出来。有关转基因和基因表达的效率属于基因治疗研究的前沿问题。最近基因治疗领域的许多争论围绕把所希望的基因转入合适的细胞中,然后为疾病治疗获得满意的表达水平。希望将来对转基因和特殊组织基因表达的研究将在主要基因治疗试验中解决这一课题。基因治疗战略的其它认识包括:充分掌握靶点疾病的发病机理,潜在的基因治疗副作用,理解接受基因治疗的靶细胞。

术语:

与大多数领域一样,基因治疗有专门的术语,下列提供的将阐明某些最普通术语的意思。

体外转基因:

把遗传物质转至寄主外部的细胞。经遗传物质移植后的细胞再回到寄主中。这个术语还被称为转基因的非直接方法。

体内转基因 :

遗传物质转入寄主体内的细胞。这还被称为转基因的直接方法。

基因治疗:

把选择过的基因转入具有改善或治愈疾病希望的寄主中。

细胞治疗(基因组治疗):

把未经遗传性修正的完整的细胞转入寄主中,使被转移的细胞将产生促进与寄主结合并改善寄主功能的希望。

体细胞转化:

把基因转入非种系组织中,它具有校正病人疾病状态的希望。

种系基因:

把基因转入种系组织中(蛋或胚胎),它有希望改变下一代的基因组。

转基因:

在转基因实验中,选择试验基因。例如,如果你给患苯并酮尿症病人治病,你可计划把一校正过的苯丙氨酸羟基酶基因译本移入肝细胞中。在这个例子中,苯丙氨酸羟基酶的校正译本就是转基因。

报告基因:

常用于试验基因转换效率的基因。例子是luceriferase, --半乳糖和氯氨素乙烯转化酶。

基因转化载体:

基因被转移进细胞的机理。

转化率:

正在表达所期望的转基因百分率。

基因重组,基因突变,染色体变异三者的联系和区别

基因重组是指非等位基因间的重新组合。能产生大量的变异类型,但只产生新的基因型,不产生新的基因。基因重组的细胞学基础是性原细胞的减数分裂第一次分裂,同源染色体彼此分裂的时候,非同源染色体之间的自由组合和同源染色体的染色单体之间的交叉互换。基因重组是杂交育种的理论基础。

基因突变是指基因的分子结构的改变,即基因中的脱氧核苷酸的排列顺序发生了改变,从而导致遗传信息的改变。基因突变的频率很低,但能产生新的基因,对生物的进化有重要意义。发生基因突变的原因是 DNA在复制时因受内部因素和外界因素的干扰而发生差错。典型实例是镰刀形细胞贫血症。基因突变是诱变育种的理论基础。

染色体变异是指染色体的数目或结构发生改变。重点是数目的变化。染色体组的概念重在理解。一个染色体组中没有同源染色体,没有等位基因,但一个染色体组中所包含的遗传信息是一套个体发育所需要的完整的遗传信息,即常说的一个基因组。对二倍体生物来说,配子中的所有染色体就是一个染色体组。染色体组数是偶数的个体一般都具有生育能力,但染色体组数是奇数的个体是高度不孕的,如一倍体和三倍体等。

染色体是遗传物质的载体,是脱氧核糖核酸(DNA)以及核蛋白在细胞分裂时的呈现形式。正常人的体细胞染色体数目为46条,并有一定的形态和结构。染色体在形态结构或数量上的异常被成为染色体异常,由染色体异常引起的疾病为染色体病。现已发现的染色体病有100余种,染色体病在临床上常可造成流产、先天愚型、先天性多发性畸形、以及癌肿等。染色体异常的发生率并不少见,在一般新生儿群体中就可达05%-07%,如以我院平均每年3000新生儿出生数计算,其中可能有15-20例为染色体异常者。而在早期自然流产时,约有50%-60%是由染色体异常所致。染色体异常发生的常见原因有电离辐射、化学物品接触、微生物感染和遗传等。临床上染色体检查的目的就是为了发现染色体异常和诊断由染色体异常引起的疾病。

染色体检查是用外周血在细胞生长刺激因子——植物凝集素(PHA)作用下经37℃,72小时培养,获得大量分裂细胞,然后加入秋水仙素使进行分裂的细胞停止于分裂中期,以便染色体的观察;再经低渗膨胀细胞,减少染色体间的相互缠绕和重叠,最后用甲醇和冰醋酸将细胞固定于载玻片上,在显微镜下观察染色体的结构和数量。正常男性的染色体核型为44条常染色体加2条性染色体X和Y,检查报告中常用46,XY来表示。正常女性的常染色体与男性相同,性染色体为2条XX,常用46,XX表示。46表示染色体的总数目,大于或小于46都属于染色体的数目异常。缺失的性染色体常用O来表示。

人体内每个细胞内有23对染色体包括22对常染色体和一对性染色体 性染色体包括:X染色体和Y染色体。含有一对X染色体的受精卵发育成女性,而具有一条X染色体和一条Y染色体者则发育成男性。这样,对于女性来说,正常的性染色体组成是XX,男性是XY。这就意味着,女性细胞减数分裂产生的配子都含有一个X染色体;男性产生的精子中有一半含有X染色体,而另一半含有Y染色体。

1、染色体是真核细胞在有丝分裂或减数分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果,是染色质的高级结构,仅在细胞分裂时才出现。染色体有种属特异性,随生物种类、细胞类型及发育阶段不同,其数量、大小和形态存在差异。

2、染色体的作用遗传信息的载体。

染色体的主要化学成份是脱氧核糖核酸(DNA)和蛋白质构成,染色体上的蛋白质有两类:一类是低分子量的碱性蛋白质即组蛋白(histones),另一类是酸性蛋白质,即非组蛋白蛋白质(non-histone proteins)。

扩展资料:

染色体的结构:

染色体的超微结构显示染色体是由直径仅100埃(1埃=01纳米)的DNA-组蛋白高度螺旋化的纤维所组成。每一条染色单体可看作一条双螺旋的DNA分子。

有丝分裂间期时,DNA解螺旋而形成无限伸展的细丝,此时不易为染料所着色,光镜下呈无定形物质,称之为染色质。有丝分裂时DNA高度螺旋化而呈现特定的形态,此时易被碱性染料着色,称之为常染色体。

参考资料来源:百度百科——染色体

分类: 教育/科学 >> 科学技术

解析:

染色体是细胞内具有遗传性质的物体,易被碱性染料染成深色,所以叫染色体(染色质),其本质是脱氧核甘酸

染色体和染色质是同一种物质再不同时期的不同称呼,分裂间期是染色质,分裂期是染色体

可以从各自出现时期和形态特征区分:

1、染色体(chromosome) 是真核细胞在有丝分裂或减数分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果,是染色质的高级结构,仅在细胞分裂时才出现。染色体有种属特异性,随生物种类、细胞类型及发育阶段不同,其数量、大小和形态存在差异。

2、染色单体是复制时产生的染色体拷贝。通常用来形容处于随后的细胞分裂期它们分开的之前的染色体。从有丝分裂前期到中期(在有丝分裂后期,着丝点断裂,此时不存在染色单体),染色体沿其长轴发生纵裂。这样被分成的二条染色体各称为染色单体。

开始成为一对的染色单体两者并不分开,逐渐它们具有独立的基质,并在其中各自形成二条染色丝。而且染色单体往往出现互相关联的螺旋。这些螺旋的圈数在中期以前逐渐减少,并且着丝粒也开始分裂。

从中期进入后期时,一对染色单体就互相完全分开,作为子染色体分别向相反的两极移动。减数分裂的二价染色体是由4条染色单体(四分染色体)产生的。

3、姐妹染色单体:一个染色体(DNA复制后的那个类似X的那种)上1个DNA分子称作一个染色单体 同一个着丝点上两条染色单体称为姐妹染色单体(完全一样咩所以称作姐妹)。

扩展资料

染色体的结构:

染色体的超微结构显示染色体是由直径仅100埃(1埃=01纳米)的DNA-组蛋白高度螺旋化的纤维所组成。每一条染色单体可看作一条双螺旋的DNA分子。有丝分裂间期时,DNA解螺旋而形成无限伸展的细丝,此时不易为染料所着色,光镜下呈无定形物质,称之为染色质。

有丝分裂时DNA高度螺旋化而呈现特定的形态,此时易被碱性染料着色,称之为常染色体。

1970年后陆续问世的各种显带技术对染色体的识别作出了很大贡献。中期染色体经过DNA变性、胰酶消化或荧光染色等处理,可出现沿纵轴排列的明暗相间的带纹。按照染色体上特征性的标志可将每一个臂从内到外分为若干区,每个区又可分为若干条带,每条带又再分为若干个亚带。

例如:9q341,即表示9号染色体长臂第3区第4条带的第1个亚带。由于每条染色体带纹的数目和宽度是相对恒定的,根据带型的不同可识别每条染色体及其片段。

参考资料来源

百度百科-染色体

百度百科-染色单体

百度百科-姐妹染色单体

以上就是关于什么是染色体全部的内容,包括:什么是染色体、什么是染色体、什么是染色体,染色体的作用是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:聚客百科

原文地址: http://juke.outofmemory.cn/life/3856732.html

()
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存