有源相控阵雷达是否使用多普勒原理

有源相控阵雷达是否使用多普勒原理,第1张

呵呵,这个很有挑战性,我决定不百度来答复你。

多普勒雷达是应用多普勒原理制作的,原理是发射机发出一定频率的无线信号当遇到障碍返回接收机时频率会发生改变,根据改变的数据测算出目标的速度及方向。

相控阵雷达的原理都一样,也是发射机发出无线信号再由接收机接收。(跟多普勒不一样,发射机亦是接收机,换句话说是一体的)有源与无源的主要区别在于有源是指每个发射机和接收机都是单独的(包括供电,信号处理),无源则是统一的。形象点说有源是并联,无源则是串联。

相控阵雷达又称作相位阵列雷达,是一种以改变雷达波相位来改变波束方向的雷达,因为是以电子方式控制波束而非传统的机械转动天线面方式,故又称电子扫描雷达。相控阵雷达有相当密集的天线阵列,在传统雷达天线面的面积上安装上千个相控阵天线,任何一个天线都可收发雷达波,而相邻的数个天线即具有一个雷达的功能。扫描时,选定其中可 一个区块(数个天线单元)或数个区块对单一目标或区域进行扫描,因此整个雷达可同时对许多目标或区域进行扫描或追踪,具有多个雷达的功能。由于一个雷达可同时针对不同方向进行扫描,再加之扫描方式为电子控制而不必由机械转动,因此资料更新率大大提高,机械扫描雷达因受限于机械转动频率因而资料更新周期为秒或十秒级,电子扫描雷达则为毫秒或微秒级。因而它更适于对付高机动目标。此外由于可发射窄波束,因而也可充当电子战天线使用,如电磁干扰甚至是构想中发射反相位雷达波来抵消探测电波等。原理我们知道,蜻蜓的每只眼睛由许许多多个小眼组成,每个小眼都能成完整的像,这样就使得蜻蜓所看到的范围要比人眼大得多。与此类似,相控阵雷达的天线阵面也由许多个辐射单元和接收单元(称为阵元)组成,单元数目和雷达的功能有关,可以从几百个到几万个。这些单元有规则地排列在平面上,构成阵列天线。利用电磁波相干原理,通过计算机控制馈往各辐射单元电流的相位,就可以改变波束的方向进行扫描,故称为电扫描。辐射单元把接收到的回波信号送入主机,完成雷达对目标的搜索、跟踪和测量。每个天线单元除了有天线振子之外,还有移相器等必须的器件。不同的振子通过移相器可以被馈入不同的相位的电流,从而在空间辐射出不同方向性的波束。天线的单元数目越多,则波束在空间可能的方位就越多。这种雷达的工作基础是相位可控的阵列天线,“相控阵”由此得名。 美国NMD系统的陆基相控阵雷达相位控制可采用相位法、实时法、频率法和电子馈电开关法。在一维上排列若干辐射单元即为线阵,在两维上排列若干辐射单元称为平面阵。辐射单元也可以排列在曲线上或曲面上.这种天线称为共形阵天线。共形阵天线可以克服线阵和平面阵扫描角小的缺点,能以一部天线实现全空域电扫。通常的共形阵天线有环形阵、圆面阵、圆锥面阵、圆柱面阵、半球面阵等。综上所述,相控阵雷达因其天线为相控阵型而得名。 例如,美国装备的“铺路爪”相控阵预警雷达在固定不动的圆形天线阵上,排列着15360个能发射电磁波的辐射器和2000个不发射电磁波的辐射器。这15360个辐射器分成96组,与其他不发射电磁波的辐射器搭配起来。这样,每组由各自的发射机供给电能,也由各自的接收机来接收自己的回波。所以,它实际上是96部雷达的组合体。如果我们把通常的雷达称作“个体户”,那么相控阵雷达就相当于一个“合作社”了。 (1)波束指向灵活,能实现无惯性快速扫描,数据率高; 美国将在日本部署的X波段相控阵雷达海基版(2)一个雷达可同时形成多个独立波束,分别实现搜索、识别、跟踪、制导、无源探测等多种功能; (3)目标容量大,可在空域内同时监视、跟踪数百个目标; (4)对复杂目标环境的适应能力强; (5)抗干扰性能好。全固态相控阵雷达的可靠性高,即使少量组件失效仍能正常工作。 美中不足的是,相控阵雷达设备复杂、造价昂贵,且波束扫描范围有限,最大扫描角为90°~120°。当需要进行全方位监视时,需配置3~4个天线阵面。 相控阵雷达与机械扫描雷达相比,扫描更灵活、性能更可靠、抗干扰能力更强,能快速适应战场条件的变化。多功能相控阵雷达已广泛用于地面远程预警系统、机载和舰载防空系统、机载和舰载系统、炮位测量、靶场测量等。美国“爱国者”防空系统的AN/MPQ-53雷达、舰载“宙斯盾”指挥控制系统中的雷达、B-1B轰炸机上的APQ-164雷达、俄罗斯C-300防空武器系统的多功能雷达等都是典型的相控阵雷达。随着微电子技术的发展,固体有源相控阵雷达得到了广泛应用,是新一代的战术防空、监视、火控雷达。

原理

雷达是一种发射电磁波,藉由解算回波之种种数据来达到探测目的的一种装置。随著年代的演进而增加新的功能,但都不脱离两个基本步骤:发射雷达波以及解算回波。

电磁波的发射,是利用正负电荷之往返震汤而发出的,在雷达上是在天线上产生正负电荷并使之震汤。发出电磁波之强度分布,为一"横躺"在x轴上的"8"字绕y轴转动後所产生的立体形状,类似红血球一般,天线指向y轴而以横躺的8字中心为中心。设由原点向任一方向画直线与此"红血球形"交於p点,则原点到p点的长度代表该方向电磁波强度。也就是说在垂直於y轴之平面上电磁波最强,随著与此平面之夹角增加电磁波随之减弱,在天线方向上则没有电磁波。以上所提对相控阵雷达原理之理解并不是那么重要,不过将有助於我们观察雷达天线的阵列情形。

当然,单一天线发射的雷达波依然是以球面扩散的,强度与距离平方成反比,所以当然不可能只用一个天线就能做成雷达啦,一定要有其他方法的,除了增强功率外,就是让雷达波尽量平行发射啦。为了达到此目的,目前主要有抛物面雷达以及平面阵列雷达,两者都是机械扫描雷达,但後者之原理与相控阵雷达有些相近。

抛物面雷达在抛物面焦点处安装发射天线,经抛物面反射成近乎平行波束,目前直升机雷达以及陆基防空雷达、机场雷达等多使用这种雷达。这种雷达现在渐渐被取代,因为抛物面相当难做,一般都是用球面或椭球面来近似,不论如何进似,终究不是真正抛物面,因此就容易出现误差。此外,这种雷达只由一个天线作收发工作,因而对单一天线性能要求就相当高,而天线故障整个雷达也就挂了。

这种雷达不是没有好处的,他能接收单一天线感测不到的强度的回波:天线有其能感测的最低电磁波强度(单位面积的功率),若强度小於这个值,就无法感测或被当杂波滤除。抛物面天线可将回波反射回位於焦点的天线,故此时天线接收到的强度就是抛物面接收到之雷达波强度之加成。

平面阵列雷达则是在一个平面上布上许多天线,藉由波的干涉原理来制造近平行波束,基本发射原理与相控阵雷达相近故留待稍後解释之。西方标准的第三代战机以及俄国第四代战机(除了MiG-31)多用这种雷达,中国自行研发的歼雷十也是平面阵列雷达。

此类雷达还仰赖"合成孔径"技术,雷达的性能除了探测距离、资料更新率等等外,还有个很重要的,解析度。解析度不高的雷达无法精确知道敌人的位置,只能知道敌人来袭却无法反制,因此要提高解析度,雷达的解析度与波束发散角(最外侧行进方向与中央线的夹角)有关,发散角越小解析度越高,而要降低发散角,就要加大天线。再某些时候这是不好做的,因而有人想到能否利用相间的小天线(天线阵列)来达成相同效果,实验证明是可行的,藉由对阵列上每个天线接收到的数据的合成处理,可以达到涵盖这些阵列的抛物面雷达的解析度。也就是说,当两天线相距d距离时,其解析度同等於以d为直径的抛物面雷达,不过接收功率仅为2个天线之接收功率和。也因为没有抛物面将回波"加成",因此对於强度小於单一天线能感测强度之最小值之回波,此种雷达是无法感应的。

不论是抛物面或平面阵列式雷达,皆属於机械扫描雷达,靠机械转动天线面来改变波束方向,因此其资料更新率与机械转动周期有关,这受到机械结构等问题影响而不会太快,一般更新周期以秒计。

抛物面雷达於平面阵列雷达之比较

口径相同时,两者的解析度相同,不过抛物面雷达接收到的功率是整个面接收到的能量的加成,故能接收强度较小的回波。而平面阵列雷达接收到的功率是每个天线的加成,其平面不可能全部都是天线,因此总功率低於抛物面雷达,且无法接收强度低於天线感测下限的回波。因为制造工艺的因素,加上相同的解析度,因此战机上抛物面雷达渐渐被取代。就好像如果可能的话,所有的天文学家都会希望有一个直径跟地球一样大的望远镜,但那是不可能的,因此只能藉由整合分开的小望远镜来达到要求的解析度。

关於雷达天线的指向

从观察雷达天线的方向(就是电偶极/electric dipole的方向),可以大概知道雷达的功能。仔细观察时,会发现目前飞机上的平面阵列雷达,其天线都是水平放置的,而像俄罗斯X-35/Kh-35"天王星"反舰导弹上的平面阵列雷达之天线,就是垂直放置的。详细情形我目前也不太清楚,我猜想这是因为这些飞机雷达需要兼顾对地性能(平面阵列雷达出现後的飞机一般都已具备对地能力),而掠海飞行的反舰飞弹不需要下视,只要要求视野宽广即可。

前面提到电磁波的发射,以及电偶极方向与电磁波强度之关系。从那里我们可以看出水平放置以及垂直放置的天线发出电波的能量分布,并从中得到放置方式与功能的关系。在前者,电磁波在俯仰方向上是最强的,往两侧渐渐减弱;在後者,水平方向是最强的,而往上下两侧渐渐减弱。所以说当天线水平放置时,可以在俯仰方向维持高强度雷达波。故推测可能是为了兼顾对地处理能力而做这种布置。

相控阵雷达之波束产生原理与平面阵列雷达其实是相同的,但多了相位控制功能因而可不必借助机械而改变波束方向。在解释此原理前先介绍几个波的专有名词:波前、相位。波前定义为与波行进方向垂直之曲线或曲面,例如平行波波前即为垂直於波束之平面,球状发射波之波前为球面波等,换言之可以用波前的扩散来想像波的行进。相位就是相角,与位置、波长、周期、时间等有关,相位差就是相位的差异。如果撇开数学,纯粹定性的话,在雷达天线面上,各天线同时发射电磁波,则各电磁波就是同相,如果各天线发射电磁波有先後次序,则各天线发射之电磁波有相位差。这么解释较容易体会吧!现在来考虑同相的情况,我们在x轴上等间格安置一模一样的点波原,点波原在平面上传波方式为圆形平面,现在只要考虑x轴以上,因为他与x轴以下情况是一样的。今假设过了一段时间,各波原产生的波行进的距离是一样的,因此可以各波原为圆心取相同半径画半圆,如此可得到各波波前交织在一起的图像,如果继续画下去,不论里面交得多乱,最前端的形状几乎是一样的,即许多圆弧交线的最前端,事实上这就是其巨观之波前。现在,我们在每两点中间再加一个点波原,赵相同方法作图,会发现最前端曲线,也就是合成波前,更加平滑,所以说,当点波原距离越近,合成波前就越接近与这些点波原连线平行之曲线(在此为直线),这就是"海更士原理",只不过海更士是倒过来说的:"波前可视为无线多个点拨圆的连线。"经由实验可以知道这是成立的。对了,有没有注意到,这就是平面阵列雷达产生近平行波束的原理!

接著,讨论有相位差的情况了,这就是相控阵雷达控制波束的原理了。同样的,我们在x轴上等间格安置一模一样的点波原,为了方便说明,由左到又依次编号1,2,3,并假设由1开始每格一个周期T的时间间隔下一个点波原才开始发射(时间间格可以自己挑,不过选择一个周期最好画)。好,开始画图吧:t=0时,1号开始发射。t=T时,2号开始发射,因为经过了一个周期,所以1也开始发射下一个波。t=2T时,以1号为圆心有两个半圆,以二号为圆心有一个半圆,同时1,2,3同时发射下一个波。照这样画下去,就会发现跟先前同相时的例子一样的圆弧交线,而且是朝著右上方传递的,当波原很接近时,该曲线就接近直线了。波就是这样往右偏折的。同样的道理,可以知道波如何往左、往上、往下偏。这就是电子扫描雷达的原理。当然要提升其效能就有其他复杂的工程问题了,如天线的密集度、处理资讯的能力等等。

因此相控阵雷达可选择雷达面上相邻的数个天线来当一个雷达用,或选用多个区块构成多组雷达来侦查同一目标以增加解析度,有的书籍上说相控阵雷达的每一个天线都相当於一个雷达,这会造成相当大的误解:如果每个都是雷达,何必选用一组去照射目标?每个天线固定在那里,要怎么去转向?了解其原理,就能避开误解了。由於是使用电子控制相位差扫描而不用机械,再加上可针对性的扫描,因此资料更新率以微秒计,远优於机械式雷达。此外由於相控阵雷达可制造窄波束,因此也具有电战功能,当然波束能多窄式取决於其他技术的,像美国APG-77雷达就可发射发散角仅2度(最外侧波行进方向与中央线之夹角)的窄波束。具有更好的反探测及电战能力

看看这里 ,就知道了。>

以上就是关于有源相控阵雷达是否使用多普勒原理全部的内容,包括:有源相控阵雷达是否使用多普勒原理、相控阵雷达是靠什么原理发现敌人的、激光主动相控阵雷达原理等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:聚客百科

原文地址: http://juke.outofmemory.cn/life/3832342.html

()
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-07
下一篇 2023-05-07

发表评论

登录后才能评论

评论列表(0条)

保存