有源相控阵雷达和无源相控阵雷达的原理是什么

有源相控阵雷达和无源相控阵雷达的原理是什么,第1张

相控阵雷达又分为有源(主动)和无源(被动)两类。其实,有源和无源相控阵雷达的天线阵相同,二者的主要区别在于发射/接收元素的多少。无源相控阵雷达仅有一个中央发射机和一个接收机,发射机产生的高频能量经计算机自动分配给天线阵的各个辐射器,目标反射信号经接收机统一放大(这一点与普通雷达区别不大)。有源相控阵雷达的每个辐射器都配装有一个发射/接收组件,每一个组件都能自己产生、接收电磁波,因此在频宽、信号处理和冗度设计上都比无源相控阵雷达具有较大的优势。正因为如此,也使得有源相控阵雷达的造价昂贵,工程化难度加大。但有源相控阵雷达在功能上有独特优点,大有取代无源相控阵雷达的趋势。

有源相控阵雷达最大的难点在于发射/接收组件的制造上,相对来说,无源相控阵雷达的技术难度要小得多。无源相控阵雷达在功率、效率、波束控制及可靠性等方面不如有源相控阵雷达,但是在功能上却明显优于普通机械扫描雷达,不失为一种较好的折中方案。因此在研制出实用的有源相控阵雷达之前,完全可以采用无源相控阵雷达作为过渡产品。而且,即使有源相控阵雷达研制成功以后,无源相控阵雷达作为相控阵雷达家族的一种低端产品,仍具有很大的实用价值。

原理

雷达是一种发射电磁波,藉由解算回波之种种数据来达到探测目的的一种装置。随著年代的演进而增加新的功能,但都不脱离两个基本步骤:发射雷达波以及解算回波。

电磁波的发射,是利用正负电荷之往返震汤而发出的,在雷达上是在天线上产生正负电荷并使之震汤。发出电磁波之强度分布,为一"横躺"在x轴上的"8"字绕y轴转动後所产生的立体形状,类似红血球一般,天线指向y轴而以横躺的8字中心为中心。设由原点向任一方向画直线与此"红血球形"交於p点,则原点到p点的长度代表该方向电磁波强度。也就是说在垂直於y轴之平面上电磁波最强,随著与此平面之夹角增加电磁波随之减弱,在天线方向上则没有电磁波。以上所提对相控阵雷达原理之理解并不是那么重要,不过将有助於我们观察雷达天线的阵列情形。

当然,单一天线发射的雷达波依然是以球面扩散的,强度与距离平方成反比,所以当然不可能只用一个天线就能做成雷达啦,一定要有其他方法的,除了增强功率外,就是让雷达波尽量平行发射啦。为了达到此目的,目前主要有抛物面雷达以及平面阵列雷达,两者都是机械扫描雷达,但後者之原理与相控阵雷达有些相近。

抛物面雷达在抛物面焦点处安装发射天线,经抛物面反射成近乎平行波束,目前直升机雷达以及陆基防空雷达、机场雷达等多使用这种雷达。这种雷达现在渐渐被取代,因为抛物面相当难做,一般都是用球面或椭球面来近似,不论如何进似,终究不是真正抛物面,因此就容易出现误差。此外,这种雷达只由一个天线作收发工作,因而对单一天线性能要求就相当高,而天线故障整个雷达也就挂了。

这种雷达不是没有好处的,他能接收单一天线感测不到的强度的回波:天线有其能感测的最低电磁波强度(单位面积的功率),若强度小於这个值,就无法感测或被当杂波滤除。抛物面天线可将回波反射回位於焦点的天线,故此时天线接收到的强度就是抛物面接收到之雷达波强度之加成。

平面阵列雷达则是在一个平面上布上许多天线,藉由波的干涉原理来制造近平行波束,基本发射原理与相控阵雷达相近故留待稍後解释之。西方标准的第三代战机以及俄国第四代战机(除了MiG-31)多用这种雷达,中国自行研发的歼雷十也是平面阵列雷达。

此类雷达还仰赖"合成孔径"技术,雷达的性能除了探测距离、资料更新率等等外,还有个很重要的,解析度。解析度不高的雷达无法精确知道敌人的位置,只能知道敌人来袭却无法反制,因此要提高解析度,雷达的解析度与波束发散角(最外侧行进方向与中央线的夹角)有关,发散角越小解析度越高,而要降低发散角,就要加大天线。再某些时候这是不好做的,因而有人想到能否利用相间的小天线(天线阵列)来达成相同效果,实验证明是可行的,藉由对阵列上每个天线接收到的数据的合成处理,可以达到涵盖这些阵列的抛物面雷达的解析度。也就是说,当两天线相距d距离时,其解析度同等於以d为直径的抛物面雷达,不过接收功率仅为2个天线之接收功率和。也因为没有抛物面将回波"加成",因此对於强度小於单一天线能感测强度之最小值之回波,此种雷达是无法感应的。

不论是抛物面或平面阵列式雷达,皆属於机械扫描雷达,靠机械转动天线面来改变波束方向,因此其资料更新率与机械转动周期有关,这受到机械结构等问题影响而不会太快,一般更新周期以秒计。

抛物面雷达於平面阵列雷达之比较

口径相同时,两者的解析度相同,不过抛物面雷达接收到的功率是整个面接收到的能量的加成,故能接收强度较小的回波。而平面阵列雷达接收到的功率是每个天线的加成,其平面不可能全部都是天线,因此总功率低於抛物面雷达,且无法接收强度低於天线感测下限的回波。因为制造工艺的因素,加上相同的解析度,因此战机上抛物面雷达渐渐被取代。就好像如果可能的话,所有的天文学家都会希望有一个直径跟地球一样大的望远镜,但那是不可能的,因此只能藉由整合分开的小望远镜来达到要求的解析度。

关於雷达天线的指向

从观察雷达天线的方向(就是电偶极/electric dipole的方向),可以大概知道雷达的功能。仔细观察时,会发现目前飞机上的平面阵列雷达,其天线都是水平放置的,而像俄罗斯X-35/Kh-35"天王星"反舰导弹上的平面阵列雷达之天线,就是垂直放置的。详细情形我目前也不太清楚,我猜想这是因为这些飞机雷达需要兼顾对地性能(平面阵列雷达出现後的飞机一般都已具备对地能力),而掠海飞行的反舰飞弹不需要下视,只要要求视野宽广即可。

前面提到电磁波的发射,以及电偶极方向与电磁波强度之关系。从那里我们可以看出水平放置以及垂直放置的天线发出电波的能量分布,并从中得到放置方式与功能的关系。在前者,电磁波在俯仰方向上是最强的,往两侧渐渐减弱;在後者,水平方向是最强的,而往上下两侧渐渐减弱。所以说当天线水平放置时,可以在俯仰方向维持高强度雷达波。故推测可能是为了兼顾对地处理能力而做这种布置。

相控阵雷达之波束产生原理与平面阵列雷达其实是相同的,但多了相位控制功能因而可不必借助机械而改变波束方向。在解释此原理前先介绍几个波的专有名词:波前、相位。波前定义为与波行进方向垂直之曲线或曲面,例如平行波波前即为垂直於波束之平面,球状发射波之波前为球面波等,换言之可以用波前的扩散来想像波的行进。相位就是相角,与位置、波长、周期、时间等有关,相位差就是相位的差异。如果撇开数学,纯粹定性的话,在雷达天线面上,各天线同时发射电磁波,则各电磁波就是同相,如果各天线发射电磁波有先後次序,则各天线发射之电磁波有相位差。这么解释较容易体会吧!现在来考虑同相的情况,我们在x轴上等间格安置一模一样的点波原,点波原在平面上传波方式为圆形平面,现在只要考虑x轴以上,因为他与x轴以下情况是一样的。今假设过了一段时间,各波原产生的波行进的距离是一样的,因此可以各波原为圆心取相同半径画半圆,如此可得到各波波前交织在一起的图像,如果继续画下去,不论里面交得多乱,最前端的形状几乎是一样的,即许多圆弧交线的最前端,事实上这就是其巨观之波前。现在,我们在每两点中间再加一个点波原,赵相同方法作图,会发现最前端曲线,也就是合成波前,更加平滑,所以说,当点波原距离越近,合成波前就越接近与这些点波原连线平行之曲线(在此为直线),这就是"海更士原理",只不过海更士是倒过来说的:"波前可视为无线多个点拨圆的连线。"经由实验可以知道这是成立的。对了,有没有注意到,这就是平面阵列雷达产生近平行波束的原理!

接著,讨论有相位差的情况了,这就是相控阵雷达控制波束的原理了。同样的,我们在x轴上等间格安置一模一样的点波原,为了方便说明,由左到又依次编号1,2,3,并假设由1开始每格一个周期T的时间间隔下一个点波原才开始发射(时间间格可以自己挑,不过选择一个周期最好画)。好,开始画图吧:t=0时,1号开始发射。t=T时,2号开始发射,因为经过了一个周期,所以1也开始发射下一个波。t=2T时,以1号为圆心有两个半圆,以二号为圆心有一个半圆,同时1,2,3同时发射下一个波。照这样画下去,就会发现跟先前同相时的例子一样的圆弧交线,而且是朝著右上方传递的,当波原很接近时,该曲线就接近直线了。波就是这样往右偏折的。同样的道理,可以知道波如何往左、往上、往下偏。这就是电子扫描雷达的原理。当然要提升其效能就有其他复杂的工程问题了,如天线的密集度、处理资讯的能力等等。

因此相控阵雷达可选择雷达面上相邻的数个天线来当一个雷达用,或选用多个区块构成多组雷达来侦查同一目标以增加解析度,有的书籍上说相控阵雷达的每一个天线都相当於一个雷达,这会造成相当大的误解:如果每个都是雷达,何必选用一组去照射目标?每个天线固定在那里,要怎么去转向?了解其原理,就能避开误解了。由於是使用电子控制相位差扫描而不用机械,再加上可针对性的扫描,因此资料更新率以微秒计,远优於机械式雷达。此外由於相控阵雷达可制造窄波束,因此也具有电战功能,当然波束能多窄式取决於其他技术的,像美国APG-77雷达就可发射发散角仅2度(最外侧波行进方向与中央线之夹角)的窄波束。具有更好的反探测及电战能力

看看这里 ,就知道了。>

有源的是每个辐射源都是完整的微型雷达,能生成雷达波\x0d\无源的是只有一个发射机,但是有多个辐射源,每个辐射源仅仅是天线\x0d\\x0d\使用上,性能上基本没区别,但是,可靠性上,有源的其中任意一个辐射源坏了,也影响不大,无源的,发射机坏了就没信号了\x0d\\x0d\而且有源的可以通过增加辐射源的数量来增加功率,同样的辐射源,组合1000个是小型雷达,组合2000个是中型,组合3000是大型,节约了设计费用,适应性很好

阵风战机使用的AESA雷达

现代战机多采用有源相控阵雷达,主要是它的优势很多,会很灵活的的快速改变波束在空间的指向,还容易获得更大的功率,可靠性也高。机械扫描的雷达需要雷达不停的左右上下转动来发射和接收雷达波,一是转动的期间有空档,二是高频率的转动会使得故障比较高,两者相比,机械雷达无故障时间为100小时,而有源相控阵雷达则达到2000小时,这个差距可就大多了。

同时有源相控雷达在传递能量过程中损失也小。主要是因为收发组件,在天线单元的后面,电流量发射出去路径短,传输过程中损失小。这样就对雷达提高发现距离更有利。而传统的机械扫描雷达,发射组件离天线单元距离远,这样电波量路径长,损失大;大概能少3-4倍。这样探测距离上就明显不如有源相控阵雷达那么远。另外,有源相控阵多功能性强大,大量收发组件都是独立工作的,效率高。

APG-79 AESA雷达,主要配备超级大黄蜂舰载机

性能强大自然工艺要求也高。相当于要把发射机,接收机,移相器,功率放大管等关键部件都集合在一个很小的部件上,实际上就是说每一个收发组件都是一个微型的雷达,这么多雷达一起工作,要想不互相干扰相当复杂。电路设计要仔细精心合理,同时制作工艺也要过关,不然很容易损坏。在雷达的总成本中,这些组件要占在8成左右。

既然全是小雷达,那么想要增加功率就增加收发组件数就可以了,同时照射目标时,有源相控阵雷达可由计算时控制,在目标身上停留更多时间,从而到得更精确的数据,停留的时间长了自然雷达波照射目标的时间也长,返回的雷达波也会更多,自然也就能就让雷达看到更远更清楚。

苏-27战斗机配备的NO01火控雷达

有源相控阵雷达是区别于无源相控阵雷达,具有波束多、指向性强、追踪目标多、覆盖死角小等优点,从使用性能上看,有源雷达可以随时改变频率,更加有利于抗干扰;可靠性更高,一个TR单元坏了,其他的仍可以继续使用,战时有源雷达可以同时探测、跟踪多个目标,战术性能远远优于无源雷达。不过有源雷达能耗较大、集成缩小较为困难。

有源雷达才有电扫描的方式,更加快速高效,由于雷达波指向灵活,可以迅速根据目标运动情况适时跟踪、识别、制导,由于体积较大,想集成使用到飞机上一直十分困难。同时在设计、使用过程中,有源雷达还需要考虑地形地波形成的干扰,所以目前世界上能成功研制有源雷达的国家十分有限。据悉,我国出口的枭龙战机上就配备了有源雷达,可见我国已经掌握了制造研发该型雷达的技术。而我国最新的歼-20战机配备的也是国产最新的有源相控阵雷达,这是我国歼-20形成战斗力的重要保证。

有源雷达的一个重要的优势就是可以在水平、高低两个方向电子扫描,从而防止遗漏和出现探测死角。但是有源雷达的一个重要缺陷就是耗电,由于电能使用效率较低,只有大约30%左右,大量的电能都被转化为热能,所以使用起来需要专门的冷却系统对雷达进行冷却,这也大大增加了机载雷达的使用效率,这也是国外很多国家无法安装机载有源雷达的原因,同时由于用电量大,实际上也会造成雷达使用效能的下降。

雷达非常耳熟,但它的原理又是什么呢? 传统雷达与相控阵雷达之区别要说相控阵雷达的原理,就不得不提一下传统雷达的工作方式。影视中,如果非要出现雷达画面的话,传统雷达就是最好的道具,因为传统雷达动感十足,快速旋转的天线便于营造紧迫感。 传统机械式雷达通过不停转动来扫描目标 雷达探测目标距离的原理:雷达波从发射到从目标返回的总时间,乘上光速,等於目标距离的两倍。传统雷达依靠360度旋转来扫描目标,而相控阵雷达与它的区别是,绝大多数相控阵雷达都是不动的,既然不动,那它又是如何扫描不同方向的呢?答案是,相控阵雷达不是「一个雷达」,本质上,它是很多个「传统雷达」的共同体。 相控阵雷达的天线很容易就能发现,相控阵雷达的天线由无数个小单元天线组成,这些小单元天线叫做「阵元」,对於有源相控阵雷达来说,每一个阵元都是独立控制的,它们既能独立发射雷达波,也能接收雷达波的回波信号。相控阵雷达不但不动,而且天线阵列也是平面的,那奇怪了,它到底是如何调整扫描方向的?顾名思义,「相控阵」就是控制每个阵元产生电磁波的相位与幅度,以此强化电磁波在指定方向上的强度,并压抑其他方向的强度,从而实现让电磁波束的方向发生改变。 相控阵雷达扫描不同方向动画示意图这就是相控阵雷达的基本工作原理,人们常把传统机械式扫描雷达比喻为「个体户」,而把相控阵雷达说成是「合作社」。人们还把它说成是21世纪的雷达,是否装配相控阵雷达也是第四代战斗机一个非常重要的标准。而很多第三代机,把老式雷达改装成相控阵雷达後,战斗力迅速提高。 F-16装上相控阵雷达后,火鸡变凤凰下面,我们就来看看,相控阵雷达有哪些先进之处。没有机械运动相控阵雷达因为省去了整个天线的机械驱动系统,所以它的可靠性非常高,平均无故障时间远远高于传统雷达。另外,相控阵雷达的思想有点儿类似于互联网,某些节点坏了不影响整体功能的使用,数百个或上千个阵元中,就算有百分之十的阵元损坏,相控阵雷达依然可以使用。分身有术相控阵雷达是否强大,跟“阵元”是否先进和阵元数量的多少有很大的关系。阵元的数量可以是几百个,也可以是上万个,像美国的“铺路爪”陆基相控阵预警雷达,就有15360个能发射电磁波的阵元和2000个不发射电磁波的阵元。15360个阵元分成96组,与其他不发射电磁波的辐射器搭配起来,本质上相当于96部雷达的组合体。 美国的“铺路爪”长程预警雷达,主要用于监视弹道导弹,它可以探测导弹的弹道、发射点,计算出弹著点的位置。同时,它还可以用于监视和探测太空中的卫星。正是因为有非常多的阵元,所以,军舰面对敌方导弹的饱和攻击时,可以把所有阵元分成若干组,每一组分别跟踪和对付一个目标。我们经常听到某种战机或者军舰能同时对付多少个多少个目标,其实,这其中的大部分功劳主要是属于战机或者军舰上的相控阵雷达。 F-35战机配备的AN / APG-81相控阵雷达,既可以跟踪空中的目标,还能监视地面上坦克和车辆,以及海面上的船只。快速切换 蜻蜓的复眼蜻蜓的眼睛又大又鼓,占据着头部的绝大部分,它是世界上眼睛最多的昆虫之一,由上万只「小眼」组成,蜻蜓的视力很棒,还能向上、向下、向前、向後看而不必转头。相控阵雷达跟蜻蜓的复眼有相似之处,每一个阵元相当於蜻蜓的每一只小眼。在很多人的眼里,雷达就是会发射和接收电磁波的铁家伙,但是其实,人类的眼睛又何尝不是这样?人的眼睛依靠接收可见光这种电磁波从而看见东西,而雷达,本质上就是「人著眼」,它是战机、军舰和卫星的眼睛,没有雷达,拳头再硬也无用武之地。传统雷达像人类的眼睛,估计还是独眼龙那种,想看到左边,就得把头扭向左边;而相控阵雷达,相当於蜻蜓的复眼,看左边和右边都不用扭头。这样的好处是,相控阵雷达探测和跟踪目标的速度极快,如果要调整100度的方向,普通雷达因为要转动,大约需要1秒,而相控阵雷达所需时间不到1毫秒。它是雷达界的全能冠军在过去,军舰上安装有不同种类的雷达,体积庞大、重不说,另一个麻烦是干扰,常常是,一种雷达工作时,另一种雷达就会受到干扰,严重的甚至不能同时工作。由於相控阵雷达由电脑控制,所以它的方位指向和波段切换速度极快,能够同时完成对空、对地、对海不同目标的探测,如此的话,它可以把原来需要多种不同种类雷达才能完成的任务一下子接过来,实现火控雷达、搜索雷达、预警雷达等合而为一。另外,相控阵雷达还可以进行战机间通信,如果集中波速,可以对敌实施电磁干扰战。相控阵雷达可以在1秒内关机,1秒内开机,好处是,当军舰遇到依靠雷达信号进行引导的「反雷达导弹」时,可以迅速地把朝向来袭导弹方向的雷达关机,同时,其他方向的雷达保持开启。智能蒙皮相控阵雷达由多个独立的收发阵元组成,未来技术成熟后,这些阵元可以分散到机身各处,与机身彻底融为一体,这就是战机的智能蒙皮,它能让飞机的机身更紧凑,进一步减少风阻。 预警机背着一个“大圆盘”,这是不得已而为之。未来智能蒙皮成熟后,大圆盘或许不再存在。以上,人们把相控阵雷达说成是21世纪的雷达,并把它作为第四代战机最重要的评判标准之一,实在是一点不为过。

有源相控阵雷达(APAR)的核心,在于其使用的雷达天线采用了有源电子扫描阵列( AESA ),所以我们一般也会把AESA直接说成是有源相控阵雷达,虽然不严谨,但意思大家都懂就可以了。与之作为对比的,则是无源电子扫描阵列( PESA )天线。

PESA其实跟AESA有很大的相似之处,比如都是由大量(几百到几千个)的天线模块构成,而提升雷达性能的主要途径,都是增加模块的数量。而由于提供给每个模块的信号的相位可以通过电子方式来改变,因此PESA和AESA都可以使雷达“指向”特定方向(通过利用波的相长/相消特性),而无需转动雷达。

(相控阵雷达指向原理)

不同的是,在PESA雷达中,只有一个主微波频率信号发生源(发射器)。这个源信号被放大后,分配给每个模块,也就是说每一个模块的频率是相同的。这样带来的优势就是所有功率全部用来执行一个任务,所以探测距离更远。但问题也随之而来,由于所有模块都在单个频率下工作,因此敌人更容易发现并干扰雷达波束。

而AESA的每一个模块都是独立的(类似于OLED的每一个像素可以自发光),都具备完整的发射/接受(T/R)功能。理论上讲可以让每一个模块都执行不同的任务。但考虑到功率太小没有实际意义,所以AESA通常会使用软件对所有模块进行分组,让每一个分组的功率尽可能大一些,而每一组则可以执行不同的任务。

(AESA多任务多目标示意图)

这样一来,AESA的优势就比较明显了。

AESA雷达可以同时形成多个分组,且频率各异。每一个分组即一个雷达波束,而各个波束可分别同时执行扫描、跟踪、火控、对抗等不同的任务。因此与PESA相比,AESA雷达具有更快的扫描速率,可以同时搜索并跟踪更多的目标。

另外,AESA雷达的特性还使其可以形成紧密聚焦波束的能力,获得更高的信号增益,因此具有更好的方向性和探测精度。比如公开资料显示,俄罗斯的Irbis-E可以形成10 x10 波束,而美国的APG-77可以形成2 x2 的超窄波束。

在任何时间,AESA的每个天线模块都可以不同的频率运行,而且,每个模块可以以每秒约1000次的速度来更改其工作频率。其结果就是,AESA雷达波束不再以单个频率工作,而是能够将信号发射散布在很宽的频率范围内,因此AESA雷达信号会被敌方预警雷达认为是天空背景噪声而忽略。

所以AESA雷达也被称为LPI(低拦截概率)雷达,并广泛装备于隐形战斗机和先进舰艇。

因为PESA所有天线模块都在单个频率下工作,因此单次发射的雷达波束频率是固定的,这就让敌人更容易发现并进行干扰(只需要对抗一个频率)。而AESA同时能够发出多个不同频率的雷达波束,抗干扰能力就要强得多。

虽然现在升级的PESA雷达也具备一定的ECCM(电子反干扰)能力,但距离AESA的抗干扰能力仍有很大的差距,这是两种技术本质上带来的差异,无法弥补。甚至传统的DRFM(数字射频存储)技术干扰器在AESA面前根本就不起作用。如果敌方干扰器采用宽带干扰的话,会导致每个频率的干扰功率大大降低,而实际上即便这样,AESA还可以在瞬间改变到某一特定频率,并再次躲过干扰。

AESA抗干扰能力强,其实也意味着它的干扰能力(电子战)也很强。由于AESA能够形成非常窄的雷达波束(例如:2 x2 ),所以可以将功率集中在较小的区域上,从而提高干扰的效果,甚至比峰值功率较大的PESA雷达更有效。

PESA雷达发射器的任何故障都将导致整个雷达完全停用。但AESA因为所有的T/R模块都是独立的,一个模块的故障对整个雷达来说几乎可以忽略不计。

另外,AESA雷达所需的维护要比PESA少得多,升级更方便,并且使用寿命也更长。比如F-35上的APG-81雷达寿命几乎是飞机机身寿命的两倍。

当然,AESA雷达也不是什么都好,比如它太贵了,功率太大了,对散热系统要求很高。而且对软件的依赖性更强,因为干的活又多又杂,就需要处理非常复杂的信号数据,等等。

总之,没有最好的雷达,只有最合适的,AESA再先进也取代不了所有的PESA,在没有进一步的技术突破之前,二者还会一直共存相当长的时间。

相控阵雷达是雷达领域最先进的存在,是人类雷达技术的集大成者。相比机械扫描雷达的工作方式,有源相控阵雷达速度快,低延时。没有搜索死角。并且可以同时扫描跟踪多方向多批次的目标,抗干扰能力强。逐渐成为了目前机载雷达和舰用雷达的主要发展方向。那么什么是相控阵雷达?相控阵雷达有哪些优缺点?有源相控阵和无源相控阵的区别是什么?相控阵雷达有多强?

什么是相控阵雷达?

相控阵雷达并非是一个单独的雷达,而是由一个个传统的雷达组合而成。相控阵雷达天线看上去是一个平板,实际上那只是雷达的整流罩。内部是由一个个小的雷达单元所组成的。这就是相控阵雷达的阵元。

在雷达工作时,雷达天线并不转动,而是通过控制每个阵元的发出电磁波的相位和幅度,强化电磁波在特定方向上的强度。从而控制整个雷达波的方向变化。而相控阵雷达有源和无源的区别就在于雷达阵元是不是能够单独的发射和接受电磁波。

相控阵雷达相比传统雷达的优缺点

优点

缺点

相控阵雷达优点虽然很多,但是好的雷达伴随着的同样也有缺点。缺点之一就是贵。造价高昂!集成了多种功能的相控阵雷达一直都是超级贵的装备。而且还有另外一个缺点,就是体积庞大,特别费电。在现有海军装备中,应该是耗电排第一的存在。目前的中华神盾和美国宙斯盾驱逐舰之所以造这么大,正是为了给舰用相控阵足够的空间。还有为其供应足够的电力。

美国部署在大型X波段巨型海基相控阵雷达的直径达到了178米。宽73米(240英尺),长119米。其塔架从底端到天线罩顶端有86米多长,排水量约50000吨。这部可以探测4800公里远的海基预警雷达的造价更是达到了22亿美元,顶的上半艘尼米兹级航母的造价了!

有源和无源的区别,为什么有源相控阵更先进

有源相控阵每个阵元都可以独立的发射和接收电磁波,而无源相控阵雷达只有一个中央发射机和中央接收机。无源相控阵雷达的阵元有点类似于偏折透镜一样。并不能独立的发射和接收电磁波。

无源相控阵雷达总体来说是相控阵雷达中的低端产品,技术难度小。而有源相控阵雷每个天线都装备有一个单独的发射接收单元,在电磁波的频宽以及信号处理和设计冗余上都比无源相控阵有更大的优势。这个优势主要表现在雷达的功率,波束的强度以及控制上都要优秀的多。所以有源相控阵雷达比无源相控阵雷达更加的先进。取代无源相控阵雷达也是大势所趋!

一部相控阵雷达,相当于多部不同用途雷达的功能总和

相控阵雷达一个阵面之上集成了数百个乃至几千个小的雷达,类似于动物的复眼。功能十分强大。现代盾舰上的相控阵雷达,是集成了多个雷达的共同体。自从相控阵雷达上舰之后,舰艇显得特别的简洁,没有那么多到处堆放的雷达天线。这主要是因为一部相控阵雷达,集成了舰艇上的几乎所有的警戒,制导,航海以及其他的火控雷达。一部相控阵可以做到的,传统雷达需要多不雷达才能完成。

有源相控阵是未来雷达发展的一个重点方向。有源相控阵雷达内有大量的收/发组件代替了传统型的独立的发射机和接收机。这些组件安在平面阵上,形成了天线。如同垂直面内的电扫描可用移相进行,有源阵的电扫描可在方位和仰角上控制。每个组件都有自已的发射和接收天线,因此发射的脉冲信号各自独立,这样相位控制也是各自独立,达到整个波束能指向所需的目标。 该雷达能量以笔形波束聚焦,在方位和仰角上执行一般警戒扫描,或直接指向特别重要的区域,如有大量目标的区域或有干扰的区域。扫描角一般在±60°以上,虽然天线口径的减小会引起雷达性能随着角度增加而下降。 相控阵系统有一个或多个阵列面,每个阵列面有几千个独立的收/发单元,每个单元用数字相位控制作波束扫描。用三个或四个阵列面,就可指向不同方向,所以天线不需作机械移动就可达到整个方位的覆盖。 方位和仰角覆盖角达60°以上时,任意两个方向间的波束转换仅需重新作相位控制的时间限制,比典型的无源阵列的025ms小的多。 换句话说,如果天线以传统方式旋转,那么电扫描方式就加长了对有严重杂波或干扰的目标的探测,提取的信息量就加大了。在海上应用中,可用电控制卷动和调节,这就减小了机械复杂性和重量。这点对安装在船桅上的设备来说是很重要的。 1缓慢降级 传统型雷达有一发射机,它需要大的电压来产生大功率输出,如果发射机出故障,那么整个系统就失效了。同样,垂直面内的相控阵其发射机也常是唯一的,因此,仰角波束就可以通过相对少的接收通道形成。 2多波束 有源相控阵应用于多目标和强干扰情况下有其突出优点。变化的脉冲方向图和捷变频发射可用以对抗敌方的ECM和建立详细的警戒区域方向图。先进的波束形成技术就可达到多波束接收,并可对主波束和旁瓣间的噪音进行自适应对消。天线阵可对多个子阵同时作波束形成,每个子阵馈电给相应的接收机。即同相又正交的输出信号就可以数字化,并且经复数加权产生和、差及旁瓣波束输出。那么在这些接收通道内就可确定出可能的干扰源,并在每个干扰源处产生零点波瓣。例如:有15个接收机通道,那么在主波束和旁瓣间为了有最佳对消,干扰源可达到15个(可以是噪声也可以是脉冲干扰机)。 多功能有源阵列雷达适用于密集型干扰环境中对横截面积很小的导弹的探测。对现代化的武器系统,雷达可提供大量的火控通道,同时跟踪敌方的防御导弹,对一般的武器,还可提供中程控制。

学过高中物理中的肯定知道“波的干涉”。相控阵雷达利用的其实就是电磁波的干涉,相控阵雷达天线上都有很多按规则排列的小的发射装置,每个发射装置会发射出经过调制的电磁波,通过控制每个发射装置发出电磁波的相位,就能实现在不同区域上的电磁波有的振幅加强,有的振幅削弱,如果再通过计算机对每个发射装置的相位统一进行控制,就可以实现电磁波加强的方位不断变化,从而实现扫描和波形的变化。由于是采用电子控制,而免受机械扫描的限制,其扫描一次的时间大大缩短,精度和反应速度大大提升。如果难以理解,楼主可以想想两个波源的干涉,理解了这个,那多个波源的干涉也是同样的道理。所谓“相控”就是“相位控制”的意思。实在不懂,可以查查波的干涉相关知识。以上纯属原创,转载请注明。谢谢!

以上就是关于有源相控阵雷达和无源相控阵雷达的原理是什么全部的内容,包括:有源相控阵雷达和无源相控阵雷达的原理是什么、激光主动相控阵雷达原理、无源和有源相控阵雷达到底有什么区别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:聚客百科

原文地址: http://juke.outofmemory.cn/life/3754774.html

()
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)

保存