天然气是一种什么气体

天然气是一种什么气体,第1张

天然气是一种以烃为主体的混合气体,是地下岩石储集层中的烃类和非烃类气体的混合物,多存在于地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气以及生物生成气等,具有无色、无味等特性。

天然气有哪些用途

天然气的用途很广泛,可以用来发电、作为化工原料、城市燃气工业、造纸、冶金以及玻璃制作等行业。

天然气也可以作为汽车的发动机燃料,以天然气来代替汽油的天然气汽车具有燃烧稳定、污染少等特点。

天然气在我们的日常生活中广泛应用于燃气灶具、热水器等的使用以及采暖和制冷。

天然气定义

从广义的定义来说,天然气是指自然界中天然存在的一切气体,包括大气圈、水圈、生物圈和岩石圈中各种自然过程形成的气体。而人们长期以来通用的“天然气”的定义,是从能量角度出发的狭义定义,是指天然蕴藏于地层中的烃类和非烃类气体的混合物,主要存在于油田气、气田气、煤层气、泥火山气和生物生成气中。天然气油可分为伴生气和非伴生气两种。伴随原油共生,与原油同时被采出的油田气叫伴生气;非伴生气包括纯气田天然气和凝析气田天然气两种,在地层中都以气态存在。凝析气田天然气从地层流出井口后,随着压力和温度的下降,分离为气液两相,气相是凝析气田天然气,液相是凝析液,叫凝析油。

与煤炭、石油等能源相比,天然气在燃烧过程中产生的能影响人类呼吸系统健康的物质极少,产生的二氧化碳仅为煤的40%左右,产生的二氧化硫也很少。天然气燃烧后无废渣、废水产生,具有使用安全、热值高、洁净等优势。

天然气是一种多组分的混合气体,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般还含有硫化氢、二氧化碳、氮和水气,以及微量的惰性气体,如氦和氩等。在标准状况下,甲烷至丁烷以气体状态存在,戊烷以上为液体。

天然气系古生物遗骸长期沉积地下,经慢慢转化及变质裂解而产生之气态碳氢化合物,具可燃性,多在油田开采原油时伴随而出。

天然气蕴藏在地下多孔隙岩层中,主要成分为甲烷,比重065,比空气轻,具有无色、无味、无毒之特性。 天然气公司皆遵照政府规定添加臭剂(四氢噻吩),以资用户嗅辨。

若天然气在空气中浓度为5%~15%的范围内,遇明火即可发生爆炸,这个浓度范围即为天然气的爆炸极限。爆炸在瞬间产生高压、高温,其破坏力和危险性都是很大的。

依天然气蕴藏状态,又分为构造性天然气、水溶性天然气、煤矿天然气等三种。而构造性天然气又可分为伴随原油出产的湿性天然气、与不含液体成份的干性天然气。

[编辑本段]天然气主要用途

1、天然气发电,具有缓解能源紧缺、降低燃煤发电比例,减少环境污染的有效途径,且从经济效益看,天然气发电的单位装机容量所需投资少,建设工期短,上网电价较低,具有较强的竞争力。

2、天然气化工工业,天然气是制造氮肥的最佳原料,具有投资少、成本低、污染少等特点。天然气占氮肥生产原料的比重,世界平均为80%左右。

3、城市燃气事业,特别是居民生活用燃料。随着人民生活水平的提高及环保意识的增强,大部分城市对天然气的需求明显增加。天然气作为民用燃料的经济效益也大于工业燃料。

4、压缩天然气汽车,以天然气代替汽车用油,具有价格低、污染少、安全等优点。

目前人们的环保意识提高,世界需求干净能源的呼声高涨,各国政府也透过立法程序来传达这种趋势,天然气曾被视为最干净的能源之一,再加上1990年中东的波斯湾危机,加深美国及主要石油消耗国家研发替代能源的决心,因此,在还未发现真正的替代能源前,天然气需求量自然会增加。

[编辑本段]天然气的成因

天然气与石油生成过程既有联系又有区别:石油主要形成于深成作用阶段,由催化裂解作用引起,而天然气的形成则贯穿于成岩、深成、后成直至变质作用的始终;与石油的生成相比,无论是原始物质还是生成环境,天然气的生成都更广泛、更迅速、更容易,各种类型的有机质都可形成天然气——腐泥型有机质则既生油又生气,腐植形有机质主要生成气态烃。因此天然气的成因是多种多样的。归纳起来,天然气的成因可分为生物成因气、油型气和煤型气。近年来无机成因气尤其是非烃气受到高度重视,这里一并简要介绍,最后还了解各种成因气的判别方法。

一、生物成因气

1概念

生物成因气—指成岩作用(阶段)早期,在浅层生物化学作用带内,沉积有机质经微生物的群体发酵和合成作用形成的天然气。其中有时混有早期低温降解形成的气体。生物成因气出现在埋藏浅、时代新和演化程度低的岩层中,以含甲烷气为主。�

2形成条件�

生物成因气形成的前提条件是更加丰富的有机质和强还原环境。

最有利于生气的有机母质是草本腐植型—腐泥腐植型,这些有机质多分布于陆源物质供应丰富的三角洲和沼泽湖滨带,通常含陆源有机质的砂泥岩系列最有利。硫酸岩层中难以形成大量生物成因气的原因,是因为硫酸对产甲烷菌有明显的抵制作用,H2优先还原SO42-→S2-形成金属硫化物或H2S等,因此CO2不能被H2还原为CH4。�

甲烷菌的生长需要合适的地化环境,首先是足够强的还原条件,一般Eh<-300mV为宜(即地层水中的氧和SO42-依次全部被还原以后,才会大量繁殖);其次对pH值要求以靠近中性为宜,一般60~80,最佳值72~76;再者,甲烷菌生长温度O~75℃,最佳值37~42℃。没有这些外部条件,甲烷菌就不能大量繁殖,也就不能形成大量甲烷气。�

3化学组成

生物成因气的化学组成几乎全是甲烷,其含量一般>98%,高的可达99%以上,重烃含量很少,一般<1%,其余是少量的N2和CO2。因此生物成因气的干燥系数(Cl/∑C2+)一般在数百~数千以上,为典型的干气,甲烷的δ13C1值一般-85~-55‰,最低可达-100‰。世界上许多国家与地区都发现了生物成因气藏,如在西西伯利亚683-1300米白垩系地层中,发现了可采储量达105万亿m3的气藏。我国柴达木盆地(有些单井日产达1百多万方)和上海地区(长江三角洲)也发现了这类气藏。

二.油型气

1概念

油型气包括湿气(石油伴生气)、凝析气和裂解气。它们是沉积有机质特别是腐泥型有机质在热降解成油过程中,与石油一起形成的,或者是在后成作用阶段由有机质和早期形成的液态石油热裂解形成的。

2形成与分布

与石油经有机质热解逐步形成一样,天然气的形成也具明显的垂直分带性。

在剖面最上部(成岩阶段)是生物成因气,在深成阶段后期是低分子量气态烃(C2~C4)即湿气,以及由于高温高压使轻质液态烃逆蒸发形成的凝析气。在剖面下部,由于温度上升,生成的石油裂解为小分子的轻烃直至甲烷,有机质亦进一步生成气体,以甲烷为主石油裂解气是生气序列的最后产物,通常将这一阶段称为干气带。

由石油伴生气→凝析气→干气,甲烷含量逐渐增多,故干燥系数升高,甲烷δ13C1值随有机质演化程度增大而增大。

对我国四川盆地气田的研究(包茨,1988)认为,该盆地的古生代气田是高温甲烷生气期形成的,从三叠系→震旦系,干燥系数由小到大(T:355→P:731→Z:3871),重烃由多到少。川南气田中,天然气与热变沥青共生,说明天然气是由石油热变质而成的。�

三.煤型气�

1.概述

煤型气是指煤系有机质(包括煤层和煤系地层中的分散有机质)热演化生成的天然气。

煤田开采中,经常出现大量瓦斯涌出的现象,如四川合川县一口井的瓦斯突出,排出瓦斯量竟高达140万立方米,这说明,煤系地层确实能生成天然气。

煤型气是一种多成分的混合气体,其中烃类气体以甲烷为主,重烃气含量少,一般为干气,但也可能有湿气,甚至凝析气。有时可含较多Hg蒸气和N2等。�

煤型气也可形成特大气田,1960S以来在西西伯利亚北部K2、荷兰东部盆地和北海盆地南部P等地层发现了特大的煤型气田,这三个气区探明储量22万亿m3,占世界探明天然气总储量的1/3弱。据统计(MT哈尔布蒂,1970),在世界已发现的26个大气田中,有16个属煤型气田,数量占60%,储量占722%,由此可见,煤型气在世界可燃天然气资源构成中占有重要地位。我国煤炭资源丰富,据统计有6千亿吨,居世界第三位,聚煤盆地发育,现已发现有煤型气聚集的有华北、鄂尔多斯、四川、台湾—东海、莺歌海—琼东南、以及吐哈等盆地。经研究,鄂尔多斯盆地中部大气区的气多半来自上古生界C-P煤系地层(上古∶下古气源=7∶3或6∶4),可见煤系地层生成天然气的潜力很大。

2成煤作用与煤型气的形成

成煤作用可分为泥炭化和煤化作用两个阶段。前一阶段,堆积在沼泽、湖泊或浅海环境下的植物遗体和碎片,经生化作用形成煤的前身——泥炭;随着盆地沉降,埋藏加深和温度压力增高,由泥炭化阶段进入煤化作用阶段,在煤化作用中泥炭经过微生物酶解、压实、脱水等作用变为褐煤;当埋藏逐步加深,已形成的褐煤在温度、压力和时间等因素作用下,按长焰煤→气煤→肥煤→焦煤→瘦煤→贫煤→无烟煤的序列转化。

实测表明,煤的挥发分随煤化作用增强明显降低,由褐煤→烟煤→无烟煤,挥发分大约由50%降到5%。这些挥发分主要以CH4、CO2、H2O、N2、NH3等气态产物的形式逸出,是形成煤型气的基础,煤化作用中析出的主要挥发性产物见图5-9。

1煤化作用中挥发性产物总量 2CO2 3H2O 4CH4 5NH3 6H2S

从形成煤型气的角度出发,应该注意在煤化作用过程中成煤物质的四次较为明显变化(煤岩学上称之为煤化跃变):

第一次跃变发生于长焰煤开始阶段,碳含量Cr=75-80%,挥发分Vr=43%,Ro=06%;

第二次跃变发生于肥煤阶段,Cr=87%,Vr=29%,Ro=13%;�

第三次跃变发生烟煤→无烟煤阶段,Cr=91%,Vr=8%,Ro=25%;�

第四次跃变发生于无烟煤→变质无烟煤阶段,Cr=935%,Vr=4%,Ro=37%,芳香族稠环缩合程度大大提高。

在这四次跃变中,导致煤质变化最为明显的是第一、二次跃变。煤化跃变不仅表现为煤的质变,而且每次跃变都相应地为一次成气(甲烷)高峰。

煤型气的形成及产率不仅与煤阶有关,而且还与煤的煤岩组成有关,腐殖煤在显微镜下可分为镜质组、类脂组和惰性组三种显微组分,我国大多数煤田的腐殖煤中,各组分的含量以镜质组最高,约占50~80%,惰性组占10~20%(高者达30~50%),类脂组含量最低,一般不超过5%。

在成煤作用中,各显微组分对成气的贡献是不同的。长庆油田与中国科院地化所(1984)在成功地分离提纯煤的有机显微组分基础上,开展了低阶煤有机显微组分热演化模拟实验,并探讨了不同显微组分的成烃贡和成烃机理。发现三种显微组分的最终成烃效率比约为类脂组:镜质组:惰性组=3:1:071,产气能力比约为33:1:08,说明惰性组也具一定生气能力。

四.无机成因气

地球深部岩浆活动、变质岩和宇宙空间分布的可燃气体,以及岩石无机盐类分解产生的气体,都属于无机成因气或非生物成因气。它属于干气,以甲烷为主,有时含CO2、N2、He及H2S、Hg蒸汽等,甚至以它们的某一种为主,形成具有工业意义的非烃气藏。

1 甲烷�

无机合成:CO2 + H2 → CH4 + H2O 条件:高温(250℃)、铁族元素

地球原始大气中甲烷:吸收于地幔,沿深断裂、火山活动等排出�

板块俯冲带甲烷:大洋板块俯冲高温高压下脱水,分解产生的H、C、CO/CO2→CH4�

2 CO2�

天然气中高含CO2与高含烃类气一样,同样具有重要的经济意义,对于CO2气藏来说,有经济价值者是CO2含量>80%(体积浓度)的天然气,可广泛用于工业、农业、气象、医疗、饮食业和环保等领域。我国广东省三水盆地沙头圩水深9井天然气中CO2含量高达9955%,日产气量500万方,成为有很高经济价值的气藏。

目前世界上已发现的CO2气田藏主要分布在中—新生代火山区、断裂活动区、油气富集区和煤田区。从成因上看,共有以下几种:

无机成因 :

① 上地幔岩浆中富含CO2气体当岩浆沿地壳薄弱带上升、压力减小,其中CO2逸出。

② 碳酸盐岩受高温烘烤或深成变质可成大量CO2,当有地下水参与或含有Al、Mg、Fe杂质,98~200℃也能生成相当量CO2,这种成因CO2特征:CO2含量>35%,δ13CCO2>8‰。

③ 碳酸盐矿物与其它矿物相互作用也可生成CO2,如白云石与高岭石作用即可。

另外,有机成因有:

生化作用

热化学作用

油田遭氧化

煤氧化作用

3N2�

N2是大气中的主要成分,据研究,分子氮的最大浓度和逸度出现在古地台边缘的含氮地层中,特别是蒸发盐岩层分布区的边界内。氮是由水层迁移到气藏中的,由硝酸盐还原而来,其先体是NH4+。

N2含量大于15%者为富氮气藏,天然气中N2的成因类型主要有:

① 有机质分解产生的N2:100-130℃达高峰,生成的N2量占总生气量的20%,含量较低;(有机)

② 地壳岩石热解脱气:如辉绿岩热解析出气量,N2可高达52%,此类N2可富集;

③ 地下卤水(硝酸盐)脱氮作用:硝酸盐经生化作用生成N2O+N2;

④ 地幔源的N2:如铁陨石含氮数十~数百个ppm;

⑤ 大气源的N2:大气中N2随地下水循环向深处运移,混入最多的主要是温泉气。

从同位素特征看,一般来说最重的氮集中在硝酸盐岩中,较重的氮集中在芳香烃化合物中,而较轻的氮则集中在铵盐和氨基酸中。

4.H2S�

全球已发现气藏中,几乎都存在有H2S气体,H2S含量>1%的气藏为富H2S的气藏,具有商业意义者须>5%。

据研究(Zhabrew等,1988),具有商业意义的H2S富集区主要是大型的含油气沉积盆地,在这些盆地的沉积剖面中均含有厚的碳酸盐一蒸发盐岩系。

自然界中的H2S生成主要有以下两类:�

① 生物成因(有机):包括生物降解和生物化学作用;1

② 热化学成因(无机):有热降解、热化学还原、高温合成等。根据热力学计算,自然环境中石膏(CaSO4)被烃类还原成H2S的需求温度高达150℃,因此自然界发现的高含H2S气藏均产于深部的碳酸盐—蒸发盐层系中,并且碳酸盐岩储集性好。�

5稀有气体(He、Ar、…)

这些气体尽管在地下含量稀少,但由于其特殊的地球化学行为,科学家们常把它们作为地球化学过程的示踪剂。

He、Ar的同位素比值3He/4He、40Ar/36Ar是查明天然气成因的极重要手段,因沿大气→壳源→壳、幔源混合→幔源,二者不断增大,前者由139×10-6→>10-5,后者则由2956→>2000。�

此外,根据围岩与气藏中Ar同位素放射性成因,还可计算出气体的形成年龄(朱铭,1990)。

五.各种成因气识别标志�

自然界中天然气分布很广,成因类型繁多且热演化程度不同,其地化特征亦多种多样,因此很难用统一的指标加以识别。实践表明,用多项指标综合判别比用单一的指标更为可靠(戴金星,1993)。天然气成因判别所涉及的项目看,主要有同位素、气组分、轻烃以及生物标志化合物等四项,其中有些内容判别标准截然,具有绝对意义,有些内容则在三种成因气上有些重叠,只具有一定的相对意义。

[编辑本段]石油与天然气的差别

石油、天然气在元素组成、结构形式以及生成的原始材料和时序等方面,有其共性、亲缘性,也有其特性、差异性。

在化学组成的特征上,天然气分子量小(小于20),结构简单,H/C原子比高(4~5),碳同位素的分馏作用显著。石油的分子量大(75~275) ,结构也较复杂,H/C 原子比相对低(14~22),碳同位素的分馏作用比天然气弱。

在物理性质方面,天然气基本是只含有极少量液态烃和水的单一气相;石油则可包容气、液、固三相而以液相为表征的混合物。天然气密度比石油小得多,既易压缩,又易膨胀。在标准条件下,天然气粘度仅n×10-2~10-3mPa·s,而石油粘度为n~n×10-3mPa·s,相差几个数量级。天然气的扩散能力和在水中的溶解度均大于石油。

在生成的条件方面,天然气比石油宽。天然气既有有机质形成,也有深成无机形成;沉积环境以湖沼型为主;生气母质以腐殖型干酪根(Ⅲ型)为主,生成的温度区间较宽,在浅部低温下即开始生成生物气;在中等深度(温度多数在65~90℃)范围内,发生的有机质热降解作用而大量生成石油的“液态窗”阶段,也可伴之生成;在深部高温条件下有机质裂解则又主要是生成天然气。天然气对储集层的要求也比石油要宽,一般岩石的孔隙度为10%~15%,渗透率在1×10-3~5×10-3μm2也可成藏。而由于天然气的活泼性,则对盖层的要求比石油严格得多。因此,天然气分布的领域要比石油广,产出的类型、贮集的形式也比石油多样,既有与石油聚集形式相似的常规天然气藏,如构造、地层、岩性气藏等,又可形成煤层气、水封气、气水化合物以及致密砂岩、页岩气等非常规的天然气藏。煤层既是生气源岩又是储集体的煤层气藏已成为很现实的类型。

“世界上已探明的天然气储量中,约有90%都不与石油伴生,而是以纯气藏或凝析气藏的形式出现,形成含气带或含气区。这说明天然气地质与石油地质虽然有某些共同性,也有密切的联系,但天然气毕竟有它自身发生、发展、形成矿藏的地质规律”(包茨,1988)。

由于天然气具有的一些特性,因而在理论研究、资源评价以及勘探技术方法和开采方式上与石油也不尽相同,需要发展一些具有针对性的工作方法和技术系列,以适应今后将不断扩大的天然气资源开发的需要。

[编辑本段]天然气开采

天然气也同原油一样埋藏在地下封闭的地质构造之中,有些和原油储藏在同一层位,有些单独存在。对于和原油储藏在同一层位的天然气,会伴随原油一起开采出来。对于只有单相气存在的,我们称之为气藏,其开采方法既与原油的开采方法十分相似,又有其特殊的地方。

由于天然气密度小,为075~08千克/立方米,井筒气柱对井底的压力小;天然气粘度小,在地层和管道中的流动阻力也小;又由于膨胀系数大,其弹性能量也大。因此天然气开采时一般采用自喷方式。这和自喷采油方式基本一样。不过因为气井压力一般较高加上天然气属于易燃易爆气体,对采气井口装置的承压能力和密封性能比对采油井口装置的要求要高的多。

天然气开采也有其自身特点。首先天然气和原油一样与底水或边水常常是一个储藏体系。伴随天然气的开采进程,水体的弹性能量会驱使水沿高渗透带窜入气藏。在这种情况下,由于岩石本身的亲水性和毛细管压力的作用,水的侵入不是有效地驱替气体,而是封闭缝缝洞洞或空隙中未排出的气体,形成死气区。这部分被圈闭在水侵带的高压气,数量可以高达岩石孔隙体积的30%~50%,从而大大地降低了气藏的最终采收率。其次气井产水后,气流入井底的渗流阻力会增加,气液两相沿油井向上的管流总能量消耗将显著增大。随着水侵影响的日益加剧,气藏的采气速度下降,气井的自喷能力减弱,单井产量迅速递减,直至井底严重积水而停产。目前治理气藏水患主要从两方面入手,一是排水,一是堵水。堵水就是采用机械卡堵、化学封堵等方法将产气层和产水层分隔开或是在油藏内建立阻水屏障。目前排水办法较多,主要原理是排除井筒积水,专业术语叫排水采气法。

小油管排水采气法是利用在一定的产气量下,油管直径越小,则气流速度越大,携液能力越强的原理,如果油管直径选择合理,就不会形成井底积水。这种方法适应于产水初期,地层压力高,产水量较少的气井。

泡沫排水采气方法就是将发泡剂通过油管或套管加入井中,发泡剂溶入井底积水与水作用形成气泡,不但可以降低积液相对密度,还能将地层中产出的水随气流带出地面。这种方法适应于地层压力高,产水量相对较少的气井。

柱塞气举排水采气方法就是在油管内下入一个柱塞。下入时柱塞中的流道处于打开状态,柱塞在其自重的作用下向下运动。当到达油管底部时柱塞中的流道自动关闭,由于作用在柱塞底部的压力大于作用在其顶部的压力,柱塞开始向上运动并将柱塞以上的积水排到地面。当其到达油管顶部时柱塞中的流道又被自动打开,又转为向下运动。通过柱塞的往复运动,就可不断将积液排出。这种方法适用于地层压力比较充足,产水量又较大的气井。

深井泵排水采气方法是利用下入井中的深井泵、抽油杆和地面抽油机,通过油管抽水,套管采气的方式控制井底压力。这种方法适用于地层压力较低的气井,特别是产水气井的中后期开采,但是运行费用相对较高。

[编辑本段]天然气分布

天然气是存在于地下岩石储集层中以烃为主体的混合气体的统称。包括油田气、气田气、煤层气、泥火山气和生物生成气等。主要成分为甲烷,通常占85-95%;其次为乙烷、丙烷、丁烷等。它是优质燃料和化工原料。其中伴生气通常是原油的挥发性部分,以气的形式存在于含油层之上,凡有原油的地层中都有,只是油、气量比例不同。即使在同一油田中的石油和天然气来源也不一定相同。他们由不同的途径和经不同的过程汇集于相同的岩石储集层中。若为非伴生气,则与液态集聚无关,可能产生于植物物质。世界天然气产量中,主要是气田气和油田气。对煤层气的开采,现已日益受到重视。

中国沉积岩分布面积广,陆相盆地多,形成优越的多种天然气储藏的地质条件。根据1993年全国天然气远景资源量的预测,中国天然气总资源量达38万亿m3,陆上天然气主要分布在中部和西部地区,分别占陆上资源量的432%和390%。 中国天然气资源的层系分布以新生界第3系和古生界地层为主,在总资源量中,新生界占373%,中生界111%,上古生界255%,下古生界261%。天然气资源的成因类型是,高成熟的裂解气和煤层气占主导地位,分别占总资源量的283%和206%,油田伴生气占188%,煤层吸附气占276%,生物气占47%。中国天然气探明储量集中在10个大型盆地,依次为:渤海湾、四川、松辽、准噶尔、莺歌海-琼东南、柴达木、吐-哈、塔里木、渤海、鄂尔多斯。中国气田以中小型为主,大多数气田的地质构造比较复杂,勘探开发难度大。1991-1995年间,中国天然气产量从16073亿m3增加到17947亿m3,平均年增长速度为233%。

我国天然气资源量区域主要分布在我国的中西盆地。同时,我国还具有主要富集于华北地区非常规的煤层气远景资源。

经过十几年的艰苦勘探,成果已清晰地展现在世人面前。它表明,在我国960万平方公里的土地和300多万平方公里的管辖海域下,蕴藏着十分丰富的天然气资源。

专家预测,资源总量可达40-60多万亿立方米,是一个天然气资源大国。勘探领域广阔,潜力巨大,前景十分美好。

近几年,祖国的东南西北中天然气勘探喜讯频传,初步为我们描绘出了21世纪天然气发展的轮廓。

东,就是东海盆地。那里已经喷射出天然气的曙光;

南,就是莺歌海-琼东南及云贵地区。那里也已展现出大气区的雄姿;

西,就是新疆的塔里木盆地、吐哈盆地、准噶尔盆地和青海的柴达木盆地。在那古丝绸之路的西端,石油、天然气会战的鼓声越擂越响。它们不但将成为我国石油战略接替的重要地区,而且天然气之火也已熊熊燃起,燎原之势不可阻挡;

北,就是东北华北的广大地区。在那里有着众多的大油田、老油田,它们在未来高科技的推动下,不但要保持油气稳产,还将有可能攀登新的高峰;

中,就是鄂尔多斯盆地和四川盆地。鄂尔多斯盆地的天然气勘探战场越扩越大,探明储量年年剧增,开发工程正在展开。四川盆地是我国天然气生产的主力地区,最近又有新的发现,大的突破,天然气的发展将进入一个全新的阶段,再上一个新台阶。

从北到南,从东到西,从陆地到海洋,天然气的希望之火冲天旺,天然气大国之梦将在希望之火中化成美丽七彩的火凤凰。

随着科技的发展,在未来的世界里人类肯定会找到比天然气更为理想的能源。但不管将来谁取代天然气,天然气将起到向新能源迈进的不可替代的重要的桥梁作用。

百科 >

天然气是指自然界中天然存在的一切气体,包括大气圈、水圈、和岩石圈中各种自然过程形成的气体(包括油田气、气田气、泥火山气、煤层气和生物生成气等)。

而人们长期以来通用的“天然气”的定义,是从能量角度出发的狭义定义,是指天然蕴藏于地层中的烃类和非烃类气体的混合物。在石油地质学中,通常指油田气和气田气。其组成以烃类为主,并含有非烃气体。

以上就是关于天然气是一种什么气体全部的内容,包括:天然气是一种什么气体、什么是天然气、什么是天然气等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:聚客百科

原文地址: http://juke.outofmemory.cn/life/3728976.html

()
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-29
下一篇 2023-04-29

发表评论

登录后才能评论

评论列表(0条)

保存